

MACH **Completion Report**

Management of Aquatic Ecosystems through **Community Husbandry**

Volume 3

Fish Catch & Consumption Survey Report

A project of the Government of Bangladesh Supported by USAID **Project Partners:** Winrock International Bangladesh Centre for Advanced Studies (BCAS) Center for Natural Resource Studies (CNRS) **CARITAS Bangladesh**

October 2003

MACH

FISH CATCH, CONSUMPTION

AND

ALTERNATIVE INCOME MONITORING

TABLE OF CONTENTS

PREFACE	i
EXECUTIVE SUMMARY	ii
1. THE MONITORING METHODLOGY	1
1.1. BACKGROUND	1
1.2. Fisheries	1
1.2.1. Introduction	1
1.2.2. Habitat Stratification	1
1.2.3. Monitoring Location Selection	
HABITAT TYPES	
1.2.4. Sampling Protocol	
1.2.5. Monitoring Parameters (Fisheries)	
1.2.6. Data Analysis	
1.3. FISH CONSUMPTION	
1.3.1. Introduction	4
1.3.2. Sample Households	
1.3.3. Sampling protocol	5
1.3.4. Monitoring Parameters	5
1.4. AQUATIC VEGETATION	
1.5. WILDLIFE	5
1.6. Statistical Analysis	6
2. MONITORING FINDINGS	7
2.1. FISH CATCH MONITORING	7
2.1.1. HAIL HAOR SITE	7
2.1.1.1. CPUA IN HAIL HAOR	
2.1.1.2. Gear Effort	
2.1.1.3. Gear Wise Catch	
2.1.1.4. CPUE	
2.1.1.5. Seasonal Catch	
2.1.1.6. Fish Species Diversity	
2.1.1.7. Ranking of species by quantity of catch	
2.1.2. TURAG-BANGSHI SITE	
2.1.2.1. CPUA IN TURAG-BANGSHI	
2.1.2.2. Gear Effort	
2.1.2.3. Gear Wise Catch	
2.1.2.4. CPUE	
2.1.2.5. Seasonal Catch	
2.1.2.6. Fish Species Diversity	
2.1.2.7. Ranking of species by quantity of catch	
2.1.3. KONGSHAW-MALIJHEE SITE	
2.1.3.1. CPUA in Kongshaw-Malijhee	
2.1.3.2. Efforts by gear type	
2.1.3.3. Gear Wise Catch	
2.1.3.4. CPUE	
2.1.3.5. Seasonal Catch	
2.1.3.6. Fish Species Diversity	

2.1.3.7. Ranking of species by quantity of catch	
2.2 . FISH CONSUMPTION MONITORING	
2.2.1. HAIL HAOR SITE	
2.2.1.1. Per capita fish consumption by months	
2.2.1.2.Non fish high protein consumption	
2.2.1.3. Consumption by species groups	
2.2.2. TURAG-BANGSHI SITE	
2.2.2.1. Per capita fish consumption	
2.2.2.2. Non-fish high protein food consumption	
2.22.3. Sources of fish caught and fish bought	
2.2.3. KONGSHAW-MALIJHEE SITE	
2.2.3.1. Per capita fish consumption	
2.2.3.2. Non-fish high protein food consumption	
2.2.3.3. Sources of fish caught and fish bought	
2.3. HYDROLOGY AND FISH CATCH (HAIL HAOR SITE)	
2.4. VEGETATION AND WILDLIFE MONITORING.	
2.4.1. Vegetation Diversity	
2.4.2. WILDLIFE DIVERSITY	
3. SELECTED CONCLUSIONS	

LIST OF TABLES

TABLE 1: AVERAGE CPUA (KG/HA) THREE SITESii
TABLE 2: GEAR EFFORT (NO./DAY) OBSERVED BY COMMON GEARS IN THREE SITES iii
TABLE 3: CPUE(KG/DAY/GEAR) OBSERVED BY COMMON GEARS IN THREE SITES iv
TABLE 4: BIO-DIVERSITY OBSERVED BY SITES
TABLE 5: PER CAPITA FISH CONSUMPTION (G) BY THREE SITES vi
TABLE 6: PERIODS OF ASSESSMENT OF THE THREE SITES
TABLE 7: MONITORING LOCATIONS, HABITATS AND AREAS IN THREE MACH SITES2
TABLE 8: PERIODS OF ASSESSMENT OF FISH CONSUMPTION AT THE THREE SITES
TABLE 9: CPUA (KG/HA) BY SAMPLING LOCATIONS AND BY YEARS
TABLE 10: GEAR EFFORT (NO./DAY) IN HAIL HAOR IN 7 MONITORING LOCATIONS AT THE
BASELINE AND IMPACT YEARS
TABLE 11: TOTAL CATCHES OF MONITORING LOCATIONS BY MAJOR GEAR TYPES AND BY YEARS
IN HAIL HAOR
TABLE 12: CPUE (KG/DAY/GEAR) OF SELECTED FISHING GEARS10
TABLE 13: FISH SPECIES DIVERSITY IN THE HAIL HAOR BY MONITORING LOCATIONS AND BY
YEAR
TABLE 14: CPUA (KG/HA/Y) BY SAMPLING LOCATIONS AND BY YEARS13
TABLE 15: GEAR EFFORT (NO/DAY) IN 8 MONITORING LOCATIONS OF TURAG-BANGSHI SITE 14
TABLE 16: TOTAL FISH CATCH OF MONITORING LOCATIONS BY GEAR TYPES AND BY YEARS IN
TURAG-BONGSHI14
TABLE 17: CPUE (KG/DAY/GEAR) OF SELECTED GEARS IN TURAG-BANGSHI SITE15
TABLE 18: FISH SPECIES DIVERSITY IN THE TURAG-BONGSHI BY MONITORING LOCATIONS AND
BY YEAR16
TABLE 19:: CPUA (KG/HA/Y) BY SAMPLING LOCATIONS AND BY YEARS17
TABLE 20: EFFORT BY GEAR TYPE (NO./DAY) IN 8 MONITORING LOCATIONS AT KM SITE18
TABLE 21: TOTAL FISH CATCH IN KANGSHA-MALIJHEE BY GEAR TYPES AND BY YEARS19
TABLE 22: CPUE (KG/DAY/GEAR) OF SELECTED GEARS IN KANGSHA-MALIJHEE SITE

TABLE 23: FISH SPECIES DIVERSITY IN KANGSHA-MALIJHEE SITE	
TABLE 24: PER CAPITA FISH CONSUMPTION (G) IN HAIL HAOR SITE	
TABLE 25: OTHER NON-FISH PROTEIN CONSUMPTION (G/H/D) IN HH SITE	
TABLE 26: FISH CONSUMPTION BY SOURCES (%) IN HH SITE.	
TABLE 27: FISH SPECIES GROUP WISE CONSUMPTION (%) IN HH	
TABLE 28: PER CAPITA FISH CONSUMPTION (G) IN TB SITE	
TABLE 29: PER CAPITA NON-FISH PROTEIN CONSUMPTION (G)	
TABLE 30: FISH CONSUMPTION BY SOURCES (%) IN TB	
TABLE 31: FISH SPECIES GROUP-WISE CONSUMPTION (%) IN TB SITE	
TABLE 32: PER CAPITA FISH CONSUMPTION (G) IN KM SITE	
TABLE 33: PER CAPITA NON-FISH PROTEIN CONSUMPTION (G)	
TABLE 34: FISH CONSUMPTION BY SOURCES (%) IN KM SITE	
TABLE 35: FISH SPECIES GROUP-WISE CONSUMPTION (%) IN KM SITE	
TABLE 36: RELATIONSHIP OF CPUA AND EXTENT OF FLOOD	
TABLE 37: SPECIES OF AQUATIC VEGETATION IN BASELINE, IMAPCT-1 AND IMPAC	T-2 IN THREE
SITES	
TABLE 38: WILDLIFE SPECIES RECORDED IN BASELINE, IMPACT -1, IMPACT -2 IN	MACH SITES

LIST OF FIGURES

FIGURE 1: CPUA IN BASELINE AND IMPACT YEARS IN HAIL HAOR	7
FIGURE 2: TOTAL CATCH IN TONS IN HAIL HAOR	7
FIGURE 3: DISTRIBUTION OF SEASONAL CATCH (%) IN HH	11
FIGURE 4: CPUA IN BASELINE & IMPACT YEARS	
FIGURE 5: TOTAL CATCH IN TONS IN TB SITE	13
FIGURE 6: SEASONAL CATCH (%) IN TB	16
FIGURE 7: CPUA IN BASELINE AND IMPACT YEARS IN KM SITE	17
FIGURE 8: TOTAL CATCH IN TONS IN KM SITE	17
FIGURE 9: SEASONAL CATCH (%) IN KM SITE	
FIGURE 10: FISH CONSUMPTION (G/H/D) BY PROJECT YEARS (BY ALL CLASSES)	
FIGURE 11: PER CAPITA FISH CONSUMPTION IN HAIL HAOR OVER THE PROJECT YEARS	
FIGURE 12: FISH CONSUMPTION (G/H/D) BY PROJECT YEARS (BY ALL CLASSES)	
FIGURE 13: PER CAPITA FISH CONSUMPTION OVER THE PROJECT YEARS IN TB SITE	
FIGURE 14: FISH CONSUMPTION (G/H/D) BY PROJECT YEARS (BY ALL CLASSES)	
FIGURE 15: PER CAPITA FISH CONSUMPTION OVER THE PROJECT YEARS IN KM SITE	
FIGURE 16: HAIL HAOR THE ONSET OF PRE-MONSOON FLOODING IN RELATION TO TOT	TAL FISH
YIELD	
FIGURE-17: REGRESSION ANALYSIS OF CPUA (KG/HA) AND WATER AREA IN HAIL HAOR	site 29

LIST OF MAPS

MAP 1: CPUA OF TURAG BONSHI IN DIFFERENT LOCATION	
MAP 1: CPUA OF HAIL HAOR IN DIFFERENT LOCATION	
MAP 7: CPUA OF KONGSHOW MALIJHEE IN DIFFERENT LOCATION	
MAP 2: DIVERSITY OF HAIL HAOR IN DIFFERENT LOCATION	
MAP 5: DIVERSITY OF TURAG BANGSHI IN DIFFERENT LOCATION	
MAP 8: DIVERSITY OF KONGSHOW MALIJHEE IN DIFFERENT LOCATION	
MAP 3: CONSUMPTION OF HAIL HAOR IN DIFFERENT VILLAGE	
MAP 6: CONSUMPTION OF TURAG BONGSHI IN DIFFERENT VILLAGE	41
MAP 9: CONSUMPTION OF KONGSHOW MALIJHEE IN DIFFERENT VILLAGE	

LIST OF APPENDIXES

APPENDIX 1: FISH CATCH MONITORING FORM	41
APPENDIX 2: FISH CONSUMPTION MONITORING FORM	2
APPENDIX 3.1: ANALYSIS OF VARIANCE FOR CPUA	4
APPENDIX 3.2: ANALYSIS FOR PER CAPITA CONSUMPTION OF HAIL HAOR	5
APPENDIX 3.3: ANALYSIS FOR PER CAPITA CONSUMPTION OF TURAG BANGSHI	7
APPENDIX 3.3: ANALYSIS FOR PER CAPITA CONSUMPTION OF KONGSHOW MALIJHEE	8
APPENDIX 3.5: CONFIDENCE INTERVAL OF PER CAPITA CONSUMPTION	9
APPENDIX 4.1: SPECIES DIVERSITY COMPARISON BY DIFFERENT INTERVENTION OF HAI	l Haor
	10
APPENDIX 4.2: SPECIES DIVERSITY COMPARISON BY DIFFERENT INTERVENTION OF	TURAG
BANGSHI	12
APPENDIX 4.3 : SPECIES DIVERSITY COMPARISON OF KONSHOW MALIJHEE BY DIF	
INTERVENTION	16
APPENDIX 5.1: HAIL HAOR TOP 20 SPECIES CAUGHT	19
APPENDIX 5.2: TURAG BANGSHI TOP 20 SPECIES CAUGHT	22
APPENDIX 5.3: KONGSHOW MALIJHEE TOP 20 SPECIES CAUGHT	25
APPENDIX 6: PER CAPITA NON FISH PROTEIN CONSUMPTION	
APPENDIX 7.1: TOP 20 FISH CONSUMED IN HAIL HAOR	
APPENDIX 7.2: TOP 20 FISH CONSUMED IN TURAG BANGSHI	
APPENDIX 7.3: TOP 20 FISH CONSUMED IN KONGSHOW MALIJHEE	

PREFACE

The completion report that follows represents a summary of activities and achievements of the Management of Aquatic-ecosystems through Community Husbandry (MACH). The project was initiated in September of 1998 and the contents of this completion report contain activities and achievements through August 31, 2003. The fieldwork of MACH began at two sites (Hail Haor in Srimangal and the Turag-Bangshi site in Kaliakor) in June of 1999 after an initial inception period. Fieldwork at a third site (Kongshaw-Malijhee in Sherpur) began July the following year in 2000. This report represents the achievements in the field of 4 years in the case of two sites and 3 years in the case of the Sherpur site.

This volume 3 has been created to be able to display fully the monitoring program and its results on fish catch and that of household fish consumption. It also contains the results of many thousands of samples that may be useful to future programs or studies in the areas where MACH worked. This volume provides more detail on both the methods and results than could be provided in the main report. The field work and the write up for this volume was largely done by MACH partner CNRS or the Center for Natural Resource Studies.

This completion report has been broken up into 5 volumes, each of which has been listed below:

- Volume 1 Main Report
 Volume 2 Appendices
 Volume 3 Fish Catch and Consumption Survey Report
 Volume 4 Performance Monitoring Report
- **Volume 5** Geospatial Data Portfolio

Executive Summary

To provide the information required by the MACH SO6 indicators, MACH (Management of Aquatic Ecosystem through Community Husbandry) Project developed a robust monitoring program in the areas of fish catch and household consumption.

The main purpose of MACH monitoring has been to assess project intervention impacts with the primary focus on fish and related production outcomes. The project developed baseline on fish production, bio-diversity and per capita fish consumption and continued monitoring to measure changes due to project management interventions.

This report covers baseline and subsequent years of monitoring of fish catch, fish consumption, aquatic vegetation and the wildlife of Hail Haor, Turag-Bangshi and Kongshaw-Malijhee sites for the period 1999-2003.

Fish Catch Monitoring

1. Catch per Per Unit Area (CPUA)

Overview

Catch per unit area increased in all sites (Table1). MACH from its inception has been concerned over the accuracy of this data as catch is also dependent on the area of water coverage and timing of the annual monsoon floods. In addition MACH data analysis has taken into account the relationships between hydrological events and fish production. Field data and subsequent analysis has shown a very high correlation between the timing and the extent of flooding on fish production: the earlier the inundation and the larger the flood the greater the overall fish production.

Sites	Baseline years (kg/ha)	Average of 3 Impact years (kg/ha)	Increment of CPUA observed (kg/ha)
Hail Haor	171.08	227.69	56.61
Turag Bangshi	57.80	123.20	65.40
Kongshaw-Malijhee	150.16	211.27	61.11

 Table 1: Average CPUA (kg/ha) in three sites

Hail Haor Site: Catch Per Unit Area (CPUA) was found to be 205.05 kg/ha; 190 kg/ha and 287.28 kg/ha in the impact years –1, 2 and 3 respectively while it was only 171.08 kg/ha at pre intervention (baseline period). The highest CPUA was in impact year 3 (287.28 kg/ha). The low CPUA in the 2nd impact year CPUA may have been because there was less fishing due to political pressure on poor fisher's community during major fishing time (post monsoon and dry season khatha fishing). This mainly occurred in the Gopla River and Balla Beel areas.

Turag Bangshi Site: In T-B site Catch per Unit Area (CPUA) increased significantly during the intervention years. Estimated CPUA in impact years 1, 2 and 3 were 124.75 kg/ha, 104.78 kg/ha and 140.08 kg/ha respectively while it was only 57.8 kg/ha at baseline period. The highest CPUA 140.08 kg/ha was in impact year 3. According to the results, catch quantity increased dramatically by the 1st impact year. This was a highly degraded beel area and the

project is fairly confident that these increases are a direct result of program interventions. These interventions have been the establishment of sanctuaries in Kalidaha Beel and the kum sanctuary (Lalkha Kum and Galachipa Kum) in Turag River as well as effort control during fish breeding period. Overall CPUA in the Turag Bangshi site increased by about 113% from baseline period.

Kongshaw-Malijhee: In the KM site, data on CPUA are available only for three years, from baseline to impact year-2. The CPUA in this site was 150.16 kg/ha at base period, 149.16 kg/ha in impact year-1 and then increased to 273.37 kg/ha in impact year-2. The increase in the last year may have been due to establishment of fish sanctuaries in Katakhali, Darabashia (private land), and Kewta and in Bailla Bailsa beel along with the improved management strategies of the MACH project over the two year period.

2. Fishing effort

Hail Haor Site: The overall fishing effort (measured as number of a specific gear used per day) of almost all the major gears decreased during the intervention years except for the veshal jal and traps. The usage of these two gears increased since the baseline period. Veshal jal effort increased to 8.18 from 5.8 at baseline, while thela jal came down to 9.3 from 22.74. Thela Jal is generally used by the subsistence fishers. Use of current jal also decreased from 888.36 (baseline) to 639 (impact year-3). The suta jal usage too decreased by impact year 3.

Turag-Bangshi Site: In the 3rd impact year fishing efforts of all type of gears were observed to increase except dharma jal and current jal. Effort increased as a result the large increase in available fish.

Kongshaw-Malijhee: In KM site the commonly used gears recorded were thela jal, ber jal, current jal, traps, jhaki jal, bana, veshal jal, hand picking and hooks. The use of ber jal substantially reduced in recent years. The use of current jal went up in impact years than in the baseline. However, in Takimari-Darabashia it was almost completely stopped.

Gears	Hail	Haor	Turag Bangshi		Kongshow Malijhee	
	Baseline Period	Overall Impact Period	Baseline Period	Overall Impact Period	Baseline Period	Overall Impact Period
Ber jal	6.26	4.99	1.72	3.23	18.42	4.40
Thela jal	22.74	9.3	5.96	8.28	31.27	33.40
Current jal	881.36	639.24	85.14	91.16	86.35	207.35

Table 2: Gear Effort (No. /Day) observed by common gears in three sites

3. Fish catch by gear

Hail Haor Site: The amount of fish caught by the current jal was reduced to 38% during the impact years. The catch from the ber jal increased by more than 46% over that of baseline. In katha fishing, fish catch increased more than 300%.

Turag-Bangshi Site: The overall fish catch in impact year-3 was higher than in the baseline period. The contribution of current jal was reduced to 10% in impact year-3 from 24.73% at the baseline period while that of the ber jal increased to 43.96% in impact year-3 from 23.74% at baseline situation the contribution of jhaki jal and veshal jal also increased, which are mainly used by subsistence fishers. Project interventions ensuring establishment of

sanctuaries and management by the community's organization with support from MACH project helped increase the fish production during the intervention years.

Kongshaw-Malijhee: Ber jal and current jal contributed to 42% of total catch, which indicates that current jal was still contributing a substantial catch in impact years. More motivation is needed regarding the ues of harmful gears such as current jal and fishing through de-watering. The RMOs began work in the reduction of destructive fishing in the 2nd intervention year

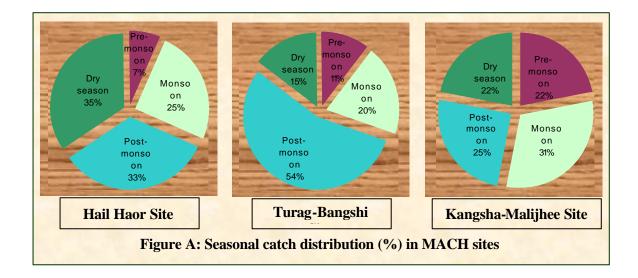
4. Catch per Unit Effort (CPUE)

Hail Haor Site: The CPUE of veshal and ber jals increased to 6.21 kg/day/unit gear and 10.54 kg/day/unit gear respectively from 5.34 kg/day/unit gear and 6.8 kg/day/unit gear in the baseline. These increases are likely to be the result of increased fish production.

Gears	Hail	Haor	Turag I	Bangshi	Kongshow	v Malijhee
	Baseline	Overall	Baseline	Overall	Baseline	Overall
	Period	Impact	Period	Impact	Period	Impact
		Period		Period		Period
Ber jal	6.87	10.54	1.91	3.37	0.92	2.50
Thela jal	1.31	2.65	0.50	0.76	0.66	0.71
Current jal	0.18	0.20	0.03	0.02	0.04	0.09

 Table 3: CPUE (kg/day/gear) observed by common gears in three sites

Turag-Bangshi Site: The average number of fishing hours decreased. CPUE of current jal was either reduced or increased only slightly. In the 3rd year the government issued a circular to stop the use of the current jal. Further community motivation and enforcement are needed.


Kongshaw-Malijhee: CPUE of ber jal increased substantially from 0.92 kg/day/unit gear in the baseline to 2.52 kg/day/unit gear in the impact years. The CPUE of current jal decreased from 0.04 kg to 0.02 kg at impact year-1. The use of current jal has been officially banned by the government.

5. Seasonality

Hail Haor Site: There are seasonal variations in quantity of fish caught. Most fish are caught in the periods October-March. About 35% of all fish are caught in the dry season (January to March), with the post monsoon season catch accounting for 33% (October to December) when the fish begin moving from floodplain to beek and beels to rivers. A total of 25% of the catch was obtained in the monsoon, much of it by subsistence fishers.

Turag-Bangshi Site: The highest catch 54% was observed in the post monsoon season (October to December) followed by 20% in the monsoon and 15% in the dry season (January to March). During the post monsoon, fish start to move from the open flooded land to perennial beels and to the rivers. Only small amounts of water remain in late February with most fishing completed by or before January. In TB site there was less scope for katha fishing in the beels as many of the beels dry up.

Kongshaw-Malijhee: The catch was the highest during the monsoon period which was different from that of the other two sites. There is likely more subsistence fishing in the KM site due to the poverty level in this site compared to the other two.

6. Bio-diversity

Hail Haor Site: The number of fish species found during the baseline period was 71 while it was 76 in impact year -3. In impact year -1 and year-2 there were variations in the number of species. The variation has been attributed mainly to observation of some species in one year, but not the other year. However, combining all impact years, a total number of 85 species has been recorded. Diversity has been maintained or increased at this site over the duration of the Phase I.

 Table 4: Bio-diversity observed by sites

Sites	Baseline	Overall Impact Years
Hail Haor	71	85 (3 yrs)
Turag Bongshi	82	95 (3 yrs)
Kongshow Malijhee	64	78 (2 yrs)

Turag-Bangshi Site: 82 species were identified in the baseline period while 91 were observed at impact year -3. Within the impact years there was a variation in number of species. However, combining all impact years, a total number species diversity observed was 95.

Kongshaw-Malijhee: Species diversity was higher in impact years than that of the baseline situation. Fish Species identified were 67 and 71 in impact year-1 and impact year-2 respectively compared to 64 in the baseline period. However considering two impact years, a total of 78 fish species was recorded. At this site the RMOs have taken the initiative and introduced locally rare species which were available there in the past. RMOs also took initiative to conserve rare species.

B. Fish Consumption

As shown in the table below overall fish consumption increased significantly in all sites. Major findings indicate that small beel and wetland resident fish and prawns constitute the main fish consumed for all households and particularly for poorer households.

Sites	Baseline years	Last Impact year	% of change compared to baseline and impact yr-3
Hail Haor	46.90	60.89 (yr 3)	29.82
Turag Bangshi	27.32	37.14 (yr 3)	35.94
Kongshow- Malijhee	22.00	26.58 (yr 1)	20.82

The vast majority (55-75%) of fish consumed in these sites and throughout the country are purchased in local markets. Studies by Helen Keller International indicate that over 50% of all fish consumed in rural Bangladesh are purchased.

Hail Haor: Per capita fish consumption for all social classes increased significantly from 46.90 g/day in the baseline period to 60.89 g/day in impact year-3. The highest increase, 40%, in fish consumption occurred among marginal farmers followed by 32% and 29% for medium and landless farmers respectively. Per capita fish consumption of large farmers was not very different, in fact a little less, 50.00g compared to the baseline situation, 52.47g. Increasing production in the haor and involvement of the poor fishers and others in AIG activities to help raise family income is expected to sustain these levels at a minimum.

Fish consumption varied significantly by season and followed the fish effort shown and discussed above. The highest quantity of fish was consumed in the post monsoon months (October to December), that is the period when fish catch and availability are at their highest. The lowest per capita consumption was in April, the driest month of the year. The monthly variation of fish consumption largely depends on the availability of fish and the purchasing capacity of the people.

Consumption by species shows that small fish, prawns and snake heads, both in the baseline and during the impact years, constitutes the main wetland fish consumed. The "Gura icha" (small prawn) contributed more in impact years (7.16% year-1, 6.87% year-2 and 5.67% year-3) than that of baseline situation (3.92%).

Turag Bangshi: Per capita fish consumption for all social classes significantly increased from 27.32g at baseline to 37.14g by impact year-3. The highest 61.32% increase in fish consumption was among the large farmers followed by 43.51% and 35.85% for small and medium farmers respectively. In the case of marginal farmer the rate of fish consumption was less compared to others groups. At the end of 3rd impact year fish consumption had increased overall by about 36%.

In line with other parts of the country, the largest amounts of fish consumed were in the post monsoon months (October to December) when fish catch was at its highest. The lowest per capita consumption period was found in April, the driest month of the year. During April availability of capture fishes is significantly reduced in the market.

As in other sites small fish, prawns and snakeheads were most preferred species consumed in all the years from baseline through the impact years. Consumption of gura icha (small prawn) increased from the baseline of 3.92% to 9.29% in impact year 1. In impact year 2 there was an 8.56% and in year-3 a 4.77% increase over the baseline year. The majority of the fish consumed are purchased in village markets.

Kongshaw-Malijhee: Per capita fish consumption was observed to be 26.58 grams/day in impact year-1 which increased from 22grams/day during the baseline period. Increase of per

capita fish consumption for landless classes was 20% and it was only 7% for the large farmers group.

Per capita consumption of fish by months varied significantly. As in other sites and throughout the country the highest per capita consumption was found in December while the lowest in April.

7. Aquatic Vegetation

The numbers of aquatic plant species observed were 107 and 51 in Hail Haor and Turag-Bangshi sites respectively. These numbers increased to 117 and 60 in the respective sites in the impact years. In Kongshaw-Malijhee, 55 species observed at baseline which after intervention increased to 72.

These differences may not be eventually due to project interventions but year to year variation in the number of aquatic vegetation species due to fluctuating water levels and varying flooding patterns. Reduced netting during the late dry season and early monsoon likely had some impact as well.

1. THE MONITORING METHODOLOGY

1.1. Background

At the out set of project implementation, provisions were made to carry out a monitoring program to capture changes in fish catch, species diversity and household level fish consumption. Some measurable indicators were set and a baseline was established for the three project sites. The fish catch and household fish consumption monitoring continued over the entire project period.

Besides fish catch monitoring, species of aquatic vegetation and wildlife presence and absence in the project sites was also monitored. However, wildlife and vegetation monitoring was discontinued from the third year of the project. Detailed monitoring methodology applied in collecting data & information and analysis is described in the following section of the report.

1.2. Fisheries

1.2.1. Introduction

To measure the changes in the fisheries indicators such as CPUA (catch per unit of area), CPUE (catch per unit of effort), and diversity of species have been considered. Prior to project interventions, baselines on such indicators were assessed. The impact assessment has been made on a yearly basis against the baseline data on selected indicators.

Prior to starting the baseline monitoring, some essential aspects related to fisheries monitoring were accomplished. These were habitat stratification, monitoring location selection, development of data collection protocol and standardization of catch efforts. The fisheries data (production and species diversity) were collected through fish catch assessment (monitoring and measuring) survey and for this purpose semi-structured questionnaire was used (Appendix 1). Field level data collection started from April 1999 in Hail Haor, from May 1999 in Turag-Bangshi and from August 2000 in Kangsha-Malijhee sites. Since then data collection has continued in an attempt to access impacts.

Sites	Baseline years	Impact year 1	Impact year 2	Impact year 3
Hail Haor	April 1999 -	April 1999 - April 2000 –		April 2002 –
	March 2000	March 2001	March 2002	March 2003
Turag Bangshi	May 1999 –	May 2000 –	May 2001 –	May 2002 –
	April 2000	April 2001	April 2002	April 2003
Kongshow Malijhee	August 2000 -	August 2001 -	August 2002 –	
	July 2001	July 2002	July 2003	-

Table 6: Periods of assessment of the three sites

Table 7 shows the periods designated as baseline and the impact years for the various sites. The impact years are referred to as impact year 1, 2 and 3 or the years after the baseline. The Kangsha-Malijhee baseline monitoring started later than the other two sites and comparisons have been made only for the period that the data is available.

1.2.2. Habitat Stratification

Biological productivity is a function of ecological conditions of habitats, which is governed by the landscape and hydrological regime of the area and human practices. The spatial and temporal variations in the project sites are high and fishing and gear techniques vary considerably at different habitat locations. In order to portray a fish catch scenario that represents area of the project interventions, habitats have been stratified into rivers, canals, beels and floodplains. The selection criteria also included the geographical distributions over the project intervention sites, inundation regime and biological importance of the area. The baseline data of some conditions have been used in some cases to measure the changes after project interventions and also as indicators to understand the usefulness of the future implementation of fisheries management. The changes are local (in a specific habitat) and global (throughout the project areas). Accordingly, a number of locations and habitats were selected and monitored.

1.2.3. Monitoring Location Selection

The locations were selected prior to the baseline study following the wetland inventory and resource-mapping exercises conducted by MACH. The impact assessment monitoring program continued in the same locations. Monitoring locations included diverse water bodies including beel, floodplain, canal and river (Table 7).

Monitoring locations	Monitoring area (ha)	Habitat types			
	Hail Haor Site	?			
Jethua Beel (I)	67.95	Beel,Canal, Floodplain			
Gopla River	41.23	River			
Boulashir floodplain	234.38	Floodplain			
Chiruadubi	30.40	Beel			
62-Beel Complex	419.48	Beel, floodplain			
Rustompur beel Complex	221.73	Beel, Canal, Floodplain			
Balla Beel	159.09	Beel, Floodplain			
Total	1174.26				
	Turag-Bangshi S	Site			
Mokash Beel South(I)	100.00	Beel			
Mokash Beel North	100.00	Floodplain			
Kali-daha Beel (I)	50.00	Beel			
Mokash Khal (I)	0.70	Canal			
Turag River (I)	14.00	River			
Aowla Khal	1.02	Canal			
Aowla Beel (I)	100.00	Beel			
Bangshi River	17.00	River			
Total	382.72				
	Kangshow-Malijhe	e Site			
Baila Beel (I)	44.10	Beel, floodplain			
Takimari Beel (I)	34.75	Beel, floodplain			
Kewta Beel (I)	33.07	Beel			
Nijla Beel	63.92	Beel, floodplain			
Bagadubi Khal	4.20	Canal			
Malijhi River (Baharalir kur)	5.00	River			
Aowra Bowra Beel	69.33	Beel			
Bailasha Beel (I)	13.35	Beel ,floodplain			
Total	267.72				

Table 7: Monitoring locations, habitats and areas in three MACH sites

1.2.4. Sampling Protocol

Floodplain fisheries, with their spatial and temporal variations in fish and water abundance, are complex and dynamic. The type of fishing gear used affects a fisher's catch within a specific habitat. A sample unit was considered to be one set of gear used for a catch attempt. The effectiveness of the fishers and their motivations are also significant in setting parameters for recording data from sample units. The selection of sample fishing units while recording catch data is crucial and requires skilled judgment of the fisheries biologist and monitoring staff. Accordingly, attempts have been made to be consistent in technique and reporting so that the best possible estimates can be made from the collected data.

To offset any bias from the spatial distribution of fishing gear used the field biologist collected data from different locations at the monitoring locations. For each gear type at least three fishing units were monitored. If there were more than 30 fishing units of one particular gear type operating in a day, data was collected from not less than 10 percent of the operating fishing units. Irrespective of catch data from individual fishing gear use, all fishing units in operation were counted during the catch monitoring day. This was taken as the total effort for that day. At the end of the day a list of fishing units by gear type was prepared. In order to accommodate for possible temporal variations in a single month the sampling intensity was set at 10-day intervals and so data was collected three times a month from the selected locations. Gear of the same type with differing dimensions was standardized at the time of data analysis and output generation to 100 feet (MACH, Baseline report on fisheries, vegetation, wildlife and protein consumption).

1.2.5. Monitoring Parameters (Fish Catch)

Fish catch assessment monitoring collected data on fishing intensity, species diversity and catch composition, fishers by category and fishing gears using a semi-structured form already mentioned earlier. The terminology used in fish catch monitoring are defined as follows:

Fishing gear and fishers:

- fishing gear type and effort intensity, net area and mesh size
- Fishers' type, sex, age, village and distance from fishing ground
- fishing intensity

Time and duration of fishing:

- fishing starting and ending times
- Probable fishing duration

Fish catch:

- Species by number and weight

Fishing rights:

- The fisher's access to the fishing ground

1.2.6. Data Analysis

The fish catch can vary spatially, temporally, and on the basis of the ecological condition of the habitat. In order to incorporate these variations and to monitor parameters, the data has been analyzed on the basis of the monitoring locations, habitats and gear types, types of fishers and seasonal variation. Fishing intensity, duration of fishing, total catch, catch by species and the number of species with their abundance have been analyzed. Catch per Unit of Effort (CPUE) has been analyzed and along with other mentioned parameters has been used to determine the Catch per Unit Area (CPUA) which has been considered as one of the indicators of fish yield changes. Each year's data was handled in exactly the same way from year to year. Formulas and definitions are given below.

Seasonal variation: For presentation the year was divided into four seasons. These are Pre-Monsoon (April-June), Monsoon (July-Sept.), Post-Monsoon (Oct.-Dec.) and Dry (Jan.-March). **Fishing gear:** The types of fishing gear found in operation during the monitoring year were recorded with their dimensions. Current *jal* and *Ber jal* Gear of the same type with differing dimensions were standardized to 100 feet to analyze Catch per Unit of Effort (CPUE).

Fishing intensity and duration of fishing: Fishing intensity describes the member of gear used during the monitored day. This has been calculated from an average of three sampling days. Gear numbers of all types are counted and then extrapolated for that month. Fishing duration was recorded for all the operated gear and the average duration of fishing was calculated for each specific gear type.

Catch per Unit of Effort (CPUE): Average catch in kilograms/per unit gear per day of operation.

Calculation of CPUE

- Conversion of Sub-Sample Catch into Sample Catch
- Conversion of Observed Time Catch into Day Catch
- Current Jal & Ber Jal is standardized on Length = 100 ft.

CPUE = (Total Catch of a specific gear type observed during monitored days by habitat for a month)/ (No. of observed gears for a specific gear type during those monitoring days by habitat for that month) = Kg/Gear/Day

Catch per Unit of Area (CPUA): The total catch of all gear per unit area over a certain period estimated from sample data.

Calculation of CPUA

Total Catch of a specific gear for one day = CPUE x No. of operated gears of that type in a day.

Then, Total Catch of all types of gears operated = Σ Total Catch of a specific gear for one day.

Total Catch for a month = Total Catch of all types of gears operated x No. of days of a month.

Finally, **CPUA** = estimated total catch of the monitoring area of a year \div Area of a Monitoring Location = Kg/ha/year

Catch composition: The catch composition was analyzed for the obtained species and the total catch of a specific habitat.

1.3. Fish Consumption

1.3.1. Introduction

It is expected that due to MACH interventions such as sanctuary creation, there would be qualitative and quantitative changes in the wetland productivity and biodiversity. These changes may have impact on household level fish consumption pattern. On this assumption fish consumption monitoring has continued in all the three sites. Data has been collected from selected households from the selected villages located within the impact area of the project intervention.

1.3.2. Sample Households

Fish consumption data have been collected from 490 households from 14 villages in the Hail Haor site, 280 households from 8 villages in Turag-Bangshi site and 280 households from 7 villages in Kangshow-Malijhee site. From each sample village, 35 sample households have been drawn from Hail Haor and Turag-Bangshi site and 40 drawn from Sherpur site covering various social classes, viz. landless, marginal farmers, small, medium and large farmers.

1.3.3. Sampling protocol

Data was collected at three-day intervals from the sample households using the forms shown in Appendix-2. Fish brought for household consumption during survey periods were weighed by species. Local trained women have been assigned as Resident Monitors (RMs) to collect the data from sample households. The field staff of CNRS-MACH supervised and assisted the RMs in data collection as well as checking the data forms and resolving problems and inconsistencies. Later at the site level office, data forms are reviewed, coded and edited by the concerned Field Officers which are then sent to MACH head office for computer processing and analysis.

Household fish consumption monitoring started at Hail Haor site from September 1999, in Turag-Bangshi from October 1999 and from January 2001 in Kangsha-Malijhee site (Table 9).

Sites	Baseline years	Impact year 1	Impact year 2	Impact year 3
Hail Haor	September 1999 -	September 2000 -	September 2001 –	September 2002 -
	April 2000	April 2001	April 2002	April 2003
Turag Bangshi	October 1999	October 2000	October 2001	October 2002
	-	-	-	-
	April 2000	April 2001	April 2002	April 2003
Kongshow Malijhee	January 2001	January 2001	January 2002	
	_	_	_	-
	December 2001	December 2002	December 2003	

 Table 8: Periods of assessment of fish consumption at the three sites

1.3.4. Monitoring Parameters

To compare the changes of fish consumption in terms of quantity and species diversity at the baseline period with that of the impact years, the following parameters have been considered:

- Per capita fish consumption by land classes
- Per capita fish consumption by months
- Number of species consumed by the people
- Ranking of species by quantity consumed
- Per capita non fish protein consumption by the people

1.4. Aquatic Vegetation

Data was collected by direct field observation and by interview. Quadrate qualitative (for aquatic vegetation) and quadrate quantitative (for terrestrial vegetation) methods were used in this survey. After visiting the field, transects were drawn across habitat types. For the aquatic vegetation study $2m^2$ quadrates from each transect were examined. For aquatic vegetation type, habitat, cover and use were examined.

1.5. Wildlife

The methodology used for the wildlife survey (data for both dry and wet seasons) were as follows:

- Transect lines were drawn across the delineated representative habitats.
- Monitors recorded the occurrence of the species along both sides of transects out to a distance

of 5 meters.

- Droppings counted for mammals and predatory birds.
- Flashing for nocturnal animals.
- Photography, call marking, and trapping of specimens for taxonomic confirmation.
- Interviewed local people (fishers, boatmen, forest wood collectors and other professionals).

The IUCN Bangladesh Red Book, 2000 was used in identification of the wildlife species recorded. The reconnaissance survey was conducted to draw transects covered all habitat types in the respective sites.

The habitats of Hail Haor included *beels*, paddy fields, homestead & riparian areas vegetation, lemon gardens, tea gardens, rubber plantations, forest plantations and natural forests. The transects taken were:

- Transect 1 included two types of habitats- beel and paddy field (from a palm tree near Shamshergonj road at Bhunabir to north-east of Balla beel).
- Transect 2 (from Foyzabad hill's wood bridge to ending of Jaita Chhara) included the homestead areas, riparian areas, lemon gardens and tea gardens.
- Transect 3 (from the south of #10 section of Burburi-Chhara tea garden b West of Magurchhara Khasia-punji) contained the rubber plantations, natural forest and forest plantations.

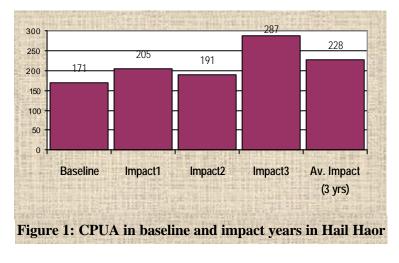
In Turag-Bangshi site three transects were drawn covering all the major habitats viz. *Beel*, River, Floodplain, Sal forest, Riparian zone, Paddy field and settlements. The transects taken were:

- Transect 1 covers from Bastali Primary School (North of Turag River) to West of Sinabaha bazaar.
- Transect 2 covers from west of Baraibari bazaar to Kalidaha Bridge.
- Transect 3 covers from Boalia village to Turag riverside.

Three transects were drawn at Kangsha-Malijhee river basin covering all the major habitats. The transects taken were:

- Transect-1 covered beels, homestead areas and paddy fields.
- Transect-2 and Transect 3 contains natural forest and plantation areas.

1.6. Statistical Analysis


To draw the statistical inferences on the monitoring data a number of statistical tests were done using SPSS program. Statistical analysis is given in Appendix 3.

2. FINDINGS

2.1. Fish Catch Monitoring

2.1.1. Hail Haor Site

2.1.1.1. CPUA in Hail Haor

Data for all the years from baseline to impact year 3 as well as the average impact are shown on figure 1. It can be seen that there has been an overall increase in the catch per unit of area (CPUA) over the impact years compared to the baseline year. The CPUA for all the monitoring locations of HH site 171.08 kg/ha in the were baseline year, which it increased to 205.05 kg/ha, 190.75 kg/ha and 287.28 kg/ha in impact year-

1, year-2 and impact year-3 respectively (Figure 1). These are significant in an environment of continued reductions due to poor use and degradation of the resource. The trend in the past was downward for these natural fisheries.

The project management years (impact years) data indicates a steady enhancement in catch since the baseline. The increase in catch quantity as expressed in kg/ha in monitoring locations has gained 67.92% increase in the impact year -3 compared to the baseline situation. On average, the CPUA for the three impact years stands at 227.69 kg/ha, which is 33% higher than that of the baseline catch.

As in the case of increased CPUA, the total quantity of catch also increased in the impact years (Figure 2). In the baseline year, the total catch was 200.89 tons increased to 240.78 tons, 223.99 tons and 337.34 tons in the impact-1, impact-2 and impact-3 years respectively. The average total catch of the three impact years was found 267 tons, which was about 33% higher than that of the baseline catch (Figure 2).

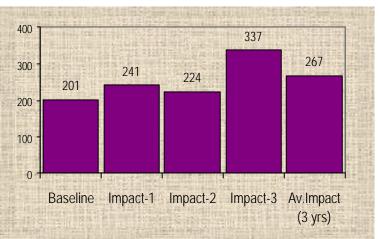


Figure 2: Total catch in tons in Hail Haor

Both the CPUA and total catch in the monitoring locations of the Hail Haor was found highest in impact year-3.

It is noted that the catch in each of the 7 monitoring locations in Hail Haor was found to vary among the locations as well as over the years due to various reasons. Table 10 shows that the overall CPUA combining the 7 locations was 171.08 kg/ha at the baseline year while it varied by location from a minimum of 35.60kg/hs in Balla Beel to a maximum of 393.67 kg/ha in Gopla River. The overall CPUA increased to 205.05 kg/ha in the impact year-1. Except for Rustampur Beel, CPUA in other locations increased in the impact year1 compared to the baseline figure. CPUA in Balla Beel was two times higher than the baseline in the impact year-1 (86.84 kg/ha) and more than four times higher in the impact year 3 than that of the baseline year (35.60 kg/ha).

The overall CPUA among the impact years was 227.69 kg/ha. Lower catch in the impact year-2 was due to lower CPUA in the Boulashir Floodplain, 62-Beel Complex and Rustampur Beel than that in the impact year-1. The CPUA again increased in impact year-3 which was highest and about 68% higher than that of the baseline year. Except in the Boulashir Floodplain, CPUA in all locations increased.

Monitoring locations	Baseline	Impact-1	Impact-2	Impact-3	Impact years (3 years)	% Change compared to baseline
	101 50	100 55	1 10 00	1.5.1.0.1		baseinte
Jetua Beel	121.58	190.55	160.08	154.91	168.52	38.61
Gopla river	393.67	465.73	490.00	732.72	562.82	42.97
Boulashir floodplain	69.82	78.01	62.03	57.28	65.77	-5.80
Cheruadubi Beel	278.31	322.97	619.49	482.94	475.13	70.72
62-Beel Complex	263.75	315.80	256.89	448.29	340.33	29.04
Rustompur Beel	159.09	154.43	144.86	253.96	184.42	15.92
Balla Beel	35.60	86.84	123.57	151.76	120.72	239.10
Overall HH site	171.08	205.05	190.75	287.28	227.69	33.09

Table 9: CPUA (kg/ha) by sampling locations and by years

Statistical analysis of the impacts of hydrology on production has been done. Bi-variate (CPUA and water level) regression analysis indicates that there is a positive correlation (R=0.87) between CPUA and retention of water level during the dry season (April-June). It reflects that there is increasing trend of CPUA during the project period (R²=0.76). It explains that 76% variation of CPUA depends on dry season water level. However, four years data are not sufficient to draw definitive conclusions.

Analysis of variance (ANOVA) shows that CPUA change significantly during the monitoring periods (p value < 0.05) (Appendix-3).

2.1.1.2. Gear Effort

Table 10: Gear Effort (No. /day) in Hail Haor in 7 monitoring locations at the baseline and impact years

Gear types			Total Gea	rs Per Day	
	Baseline	Impact-I	Impact-II	Impact-III	Overall Impact (3 years)
Veshal jal	5.8	8.16	10.92	5.81	8.18
Ber jal	6.26	8.71	1.22	5.38	4.99
Thela jal	22.74	6.34	14.80	7.15	9.3
Current jal	881.36	487.87	669.27	791.79	639.24
Suta jal	232.86	31.93	217.76	199.28	147.74
Long line	24,998.39	15,039.83	15,456.76	14,628.63	14,797.13
Traps	383.25	546.37	748.98	723.61	662.53
Other gears	3.35	9.73	119.40	78.07	68.31

Gear effort in terms of number of different fishing gears operated per day in the monitoring locations of the Hail Haor is calculated from the sampling data. The commonly operated gears as recorded in Hail Haor during the monitoring period included *veshal jal, ber jal, thela jal, current jal, suta jal, long line/kathi borshi,* traps and other minor gears. The efforts by gear type in the baseline and impact years is presented in Table 11.

Changes in the average gear effort were observed in the monitoring locations of the Hail Haor in the baseline and impact years. There is a slight reduction in the effort of various gear types in the impact years from that of the baseline situation except for traps and *veshal jal* (Table 11). Increased effort in the use of traps was observed to be significant in the impact year-3, from 383.25 in the baseline to 546.37, 748.98 and 723.61 in the impact year-1, impact - 2 and 3 respectively.

The efforts of *current jal* and *ber jal* have gone down compared to that of the baseline year. These gears are generally more harmful to the fishery during certain times of the year as these gears are very efficient in catching undersized fishes. In fact the *ber jal (Moshari jal/kafri jal)* can even catch certain types of fish eggs.

The effort of *veshal jal* has increased slightly in impact year-3. Use of long line as observed reduced significantly compared to the baseline situation. The average effort of long line was nearly 25,000, which was reduced to around 15,000 in the impact years (Table11).

2.1.1.3. Gear Wise Catch

Quantity and quality of catch varies by gears types and fishing methods. Table 11 shows that the majority of the catch 35% (70,891 kg of the total catch) in the baseline year was accomplished by the current jals while in the impact year-1 the catch was dominated by the *ber jal* constituting over 31% (75,102 kg) of the total catch. The catch of *current jal*, was reduced to about 33,000 kg (13.63% of the total catch) in the impact year-1.

Fishing by dewatering of beels constituted only over 3% of the total catch in baseline year. This increased over the impact years. The increase was by 20% (47,410 kg) of the total catch in the impact year-1, 24.6% (55,113 kg) and 28.18% (95,076 kg) in impact years 2 and 3 respectively (Table 11). Dewatering of beel in the dry season for fishing in the Hail Haor is the normal practice and it is mostly done by the leaseholders though it is illegal. The Government needs to be stronger in limiting this practice. Within the managed areas under RMO however dewatering has totally stopped.

Name of			Impact	t-1	Impac	t-2	Impac	t-3	Av. Impact	t years
gears/fishin g methods	Wt. (kg)	%	Wt. (kg)	%	Wt. (kg)	%	Wt. (kg)	%	Wt. (kg)	(%)
Current jal	70,890.99	35.29	32,829.91	13.63	38,935.87	17.38	59,578.66	17.66	43,781.48	16.37
Long line	40,513.74	20.17	15,479.47	6.43	21,162.89	9.45	28,578.46	8.47	21,740.27	8.13
Ber jal	28,550.23	14.21	75,101.65	31.19	5,917.61	2.64	44,230.72	13.11	41,749.99	15.61
Thela jal	16,034.85	7.98	6,823.2	2.83	1,4530.1	6.49	6,945.12	2.06	9,432.81	3.53
Suta jal	15,728.73	7.83	19,04.27	0.79	19,347.33	8.64	14,311.14	4.24	11,854.25	4.43
Veshal jal	10,200.26	5.08	18,526.63	7.69	16,022.55	7.15	12,841.72	3.81	15,796.97	5.91
Traps	7,435.7	3.70	25,059.98	10.41	27,872.27	12.44	31,325.3	9.29	28,085.85	10.50
Dewatering	6,556.17	3.26	47,410.1	19.69	55,112.91	24.60	95,076.36	28.18	65,866.46	24.63
Katha	2,828.85	1.41	6,849.14	2.84	9,445.02	4.22	24,727.09	7.33	13,673.75	5.11
Other gears	1,557.05	0.78	2,038.96	0.85	6,368.33	2.84	15,304.74	4.54	7,904.01	2.96
Pagars	596.67	0.30	6,895.33	2.86	3,595.06	1.60	2,142.33	0.64	4,210.91	1.57

Table 11: Total catches of monitoring locations by major gear types and by years in Hail Haor

			Impact	-1	Impac	t-2	Impac	t-3	Av. Impac	t years
gears/fishin g methods	Wt. (kg)	%	Wt. (kg)	(%)						
BRMO	0	0.00	1,861.8	0.77	5,681.79	2.54	2,283.33	0.68	3,275.64	1.23
Total	200,893.24	100.00	240,780.47	100.00	223,991.74	100.00	337,344.98	100.00	267,372.39	100.00

The increase in fish production can be attributed to establishment of sanctuaries along with other management initiatives by RMOs with project support.

Ber jal is another commonly used gear in the Hail Haor mostly operated in the monsoon and the catch of this gear also considerable. Initially ber jal contributed to 14.21% (28,550 kg) of the baseline catch which went on to increase almost more than double in the impact year-1 (over 75,000 kg) forming over 31% of the total catch. However, the *ber jal* catch dropped substantially in impact year-2 (2.64%) but increased again in impact year-3 making up for over 13% (44,231 kg) of the total catch. The average catch of the *ber jal* in 3 impact years constitutes about 16% of the total catch.

The Catch of traps was found to be significant in the overall catch of the Hail Haor. Table 12 shows that trap catch contributed only 3.7% of the total catch (7,436 kg) while it increased to over 25,000 kg in the impact year-1 (10.41% of the total catch) and further to 27,872 kg (12.44%) and 31,325 kg (9.29%) in the impact year-2 and 3 respectively. The average trap catch constituted 10.5% of the total catch in the overall average impact years (3 years).

2.1.1.4. CPUE

Catch per unit of effort is expressed as kg/day/unit of effort of specific gears. Usually it is calculated as catch per gear per day and expressed in kg and standardized as the catch per hour. From the catch data six common gears have been selected for determining the CPUE viz. *veshal jal* (dip net), *ber jal* (seine net), *thela jal* (push net), *current jal* (monofilament nylon gill net), traps and *suta jal*.

Table 12 shows the CPUE of six gears in the Hail Haor and revealed that all the six common gears operated in the Hail Haor has increased over the impact years compared to that of the baseline year. There have been negligible changes in the average fishing hours of commonly used gears observed in the baseline and impact years.

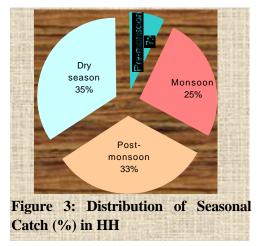

Gear types	Baseline	Av. Fishing hours	Impact- 1	Av. Fishin g hours	Impact -2	Av. Fishing hours	Impact- 3	Av. Fishing hours	Overall Impact (3 years)	Av. Fishing hours
Veshal	5.34	16.20	7.39	16.28	4.91	13.27	6.37	14.22	6.21	14.60
Ber jal	6.87	9.63	11.70	5.19	7.54	6.16	9.55	9.24	10.54	6.80
Thela jal	1.31	5.47	2.26	5.32	2.88	5.13	2.70	5.74	2.65	5.39
Current Jal	0.18	10.80	0.15	11.58	0.25	10.80	0.20	11.33	0.20	11.24
Traps	0.06	12.36	0.12	18.86	0.10	15.46	0.10	15.23	0.11	16.50
Sutajal	0.17	13.41	0.18	17.95	0.28	11.10	0.20	14.20	0.23	13.39

 Table 12: CPUE (kg/day/gear) of Selected Fishing Gears

2.1.1.5. Seasonal Catch

The catch composition and quantity varied over the seasons mainly due to changes in the inundation regimes, gear use, fishing pattern and intensities. Usually, in floodplain perennial beels, fish catch peaked in the post monsoon (October-December) and dry season (January-March).

There are two major catches during this time, the post monsoon draw down catch and dry season katha, pagar and dewatering catch. These catches usually form the bulk of the annual catch in floodplain environments. A similar trend has been observed in Hail Haor where more than 65% of the annual catch is done in post monsoon and in the dry season (Figure-3). Combining the catch data of four years in the Hail

Haor showed that 34.57% of the annual catch is done in Dry season (January-March) and 32.5% in the post monsoon (October- December).

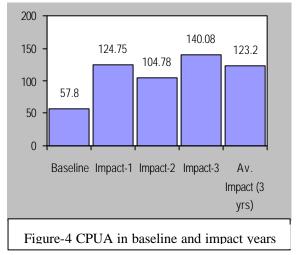
The minimum catch is done in the pre-monsoon months (April-June), which formed only 7.5% of the total annual catch. However, one fourth of the annual catch (25.46%) is done in the monsoon months (July-September). Similar trend was found in both the base line and impact situations.

2.1.1.6. Fish Species Diversity

Fish species diversity in a wetland ecosystem involves various factors. Some of these are connectivity with other wetlands, particularly with river systems, fishing practices, dry season water area and depth, and reintroduction of species. Of these factors, connectivity is a key factor affecting species diversity as this facilitates fish migration among wetland habitats.

In Hail Haor site limited progress was made in re-establishing connectivity with the Kushiara river system However, other possible measures such as, closed periods to control fishing effort, wetland sanctuary and rehabilitation of semi-degraded wetlands under project management was done. Technically, all these interventions is expected to have a positive effect on species diversity over a longer period.

In the case of Hail Haor, an increasing trend in fish species diversity was observed in the monitoring locations compared to that of the baseline year. Table 14 shows that in the baseline year a total number of fish species was recorded, 71 while the number increased to 77 by the end of impact year 2 (combining impact years 1 and 2).


The total number of fish species combining the impact years 1, 2 and 3 was recorded as 85, which is 9 higher than that of the baseline situation. However, diversity of species was observed remained same in the impact year-1 (71) and a bit low in impact year-2 (69) and it again increased to 76 in impact year-3 (Table 13). This has been due to presence of some species in one year but not found in another year. Some species was not observed in baseline year, impact year 1 & 2 but observed in impact year 3, while some species were observed in the baseline year but not found in the impact years and 2. A list of species observed in different periods is presented in Appendix-4.

Monitoring		Number of Fish Species observed							
locations	Baseline	Impact-1	Impact-2	Impact-1 & 2 combined	Impact-3	Impact-1, 2 & 3 combined			
Jethua Beel	38	48	47	56	47	59			
Gopla River	54	44	49	51	55	60			
Boulashir FP	50	51	51	57	50	61			
Chiruadubi Beel	46	44	52	53	50	56			
62- Beel	59	59	61	67	63	71			
Rustampur Beel	50	51	50	56	62	68			
Balla Beel	39	55	50	60	55	67			
Overall	71	71	69	77	76	85			

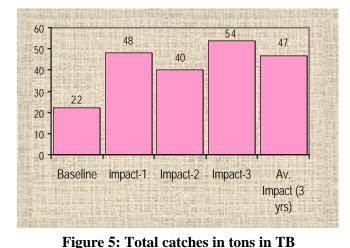
Table 13: Fish Species diversity in the Hail Haor by Monitoring Locations and by Year

2.1.1.7. Ranking of species by quantity of catch

In Hail Haor site during the monitoring period there was variation observed by fish species. The continuation of the top 20 species in the annual catch contributed 94.49%, 86.33%, 78.45% and 80.14% in baseline, impact year-1, impact year-2, and impact year-3 respectively (see Appendix-5) Data also shows that in impact-1 the contribution of *mola* was the highest (23%) of the annual catch. Among the 20 top ranked species, 5 highly ranked species were also found to vary their contributions in the four monitoring years.

2.1.2. TURAG-BANGSHI SITE

2.1.2.1. CPUA in Turag-Bangshi


Figure 4 shows the CPUA in the Turag-Bangshi (TB) site from the baseline years through the impact years and the average impact result.

The data shows an increase in overall fish catch in the monitoring locations in TB over the impact years compared to that of the baseline year. The overall CPUA for all the monitoring locations was recorded as 57.80 kg/ha/yr in the

baseline year. This increased while increasing to 124.75 kg/ha/yr, 104.78 kg/ha/yr and 140.08 kg/ha in impact years 1, 2 and 3 respectively (Figure 4).

The catch data shows a sharp increase in the impact year-1 from 58 kg/ha to 125 kg/ha, which is 116% higher than that of the baseline catch. Although, a little lower catch was observed in impact year-2 (104.78 kg/ha), this too was about 81% higher than the baseline catch (57.80 kg/ha). The highest rate of increase in catch was observed in impact year-3, which was 142% higher compared to the baseline catch. On an average, the CPUA for the three impact years stand at 123.20 kg/ha, about 113% higher than that of the baseline catch.

As in the case of increased CPUA, the total quantity of catch also increased in the impact years. In the baseline year, the total catch was 22 tons in the monitoring locations covering 382.72 ha. The total yield which has been raised to 48 tons, 40 tons and 54 tons in the impact years1, 2 and 3 respectively. The average total catch of the three impact years was 47 tons, which is about 114% higher than that of the baseline catch (Figure 5).

Like Hail Haor, both the CPUA and total catch in the monitoring locations of the TB site was found highest in impact year 3 compared to that of the baseline and other impact years.

The catch in each of the 8 monitoring locations in the TB site varied among the locations as well as over the years. Table 14 shows that the overall CPUA when the 8 locations are combined was 57.80 kg/ha/yr at the baseline year. Data shows that CPUA in all the monitoring locations

has increased in the impact year-1 compared to that of the baseline situation. Highest rate of increase in CPUA (5 times higher) was recorded in Mokosh khal in impact year 3 (3,696 kg).

The overall CPUA in the impact year-2 (104.78 kg/ha) was a bit lower than that of the impact year-1 (124.75 kg/ha) but higher than the baseline figure (57.80 kg/ha). Lower catch in the Mokosh khal and Awola khal in the impact year-2 contributed to overall lower CPUA in this year. The CPUA again increased in impact year-3 and was highest (140.08 kg/ha) over the four years, which was about 142% higher than that of the baseline year.

Monitoring Locations	Baseline	Impact-1	Impact-2	Impact-3	3 Impact	% of change compared to
					years combined	baseline
Mokash Beel (South)	42.03	98.25	79.80	103.86	93.97	123.58
Mokash Beel (North)	33.48	104.68	104.46	149.42	119.52	256.99
Kaliadaha Beel	62.40	140.97	69.34	169.17	126.49	102.71
Mokash/Solhati Khal	790.88	2380.99	1404.94	3696.42	2494.12	215.36
Turag River Section	144.47	217.23	251.54	253.07	240.61	66.55
Aowla Khal (Canal)	627.68	1485.30	858.07	1091.74	1145.04	82.42
Aowla Beel	65.78	77.84	104.96	76.12	86.31	31.21
Bangshi River Section	97.34	376.12	137.04	292.27	268.48	175.81
Overall	57.80	124.75	104.78	140.08	123.20	113.15

 Table14: CPUA (kg/ha/y) by sampling locations and by years

The regression analysis (R=.84) indicates a positive relationship between CPUA and the project intervention periods. The linear bi-variate regression determines that ($R^2 = 0.67$) 67% variation in CPUA could be explained by the project interventions. The trend of the CPUA was found positive during the project period.

Analysis (Appendix-3) of variance (ANNOVA) shows that CPUA changed significantly during the monitoring periods (p value < 0.05)

2.1.2.2. Gear Effort

Gear effort in terms of number of different fishing gears operated per day in the monitoring locations of TB site was monitored The commonly operated gear in the TB site during the monitoring period included the *veshal jal, ber jal, moi jal, thela jal, dharma jal, jhaki jal, current jal, hat* borshi, long line, traps and other minor gears. The gear efforts in the sampling location are presented in Table 15.

Gear Types			Total Ge	ars Per Day	
	Baseline	Impact-1	Impact-2	Impact-3	Overall Impact (3 years)
Veshal Jal	0.42	0.50	0.29	0.90	0.56
Ber Jal	1.72	2.40	4.41	2.89	3.23
Moi Jal	16.66	20.45	30.10	57.92	36.16
Thela Jal	5.96	8.47	9.57	6.78	8.28
Dharma Jal	11.09	1.39	1.63	4.64	2.55
Jhaki Jal	8.13	13.71	18.99	20.85	17.85
Current Jal	85.14	170.17	68.16	35.14	91.16
Hat Borshi	10.25	14.45	67.57	17.19	33.07
Long line	153.79	426.51	1146.95	1216.94	930.13
Traps	52.80	52.42	105.13	249.08	135.55
Others	2.15	3.47	25.57	4.84	11.29

Data shows that except *current jal* and *dharma jal*, effort of other gears in the TB site increased in the impact years compared to that of the baseline year.

Average effort of *current jal* increased from 85 in the baseline year to over 170 in the impact year-1 but it reduced to 68 in the impact year-2 and further reduced to about 35 in the impact year-3. The current jal is considered a harmful gear by the Government to fisheries production and biodiversity. Such reduction in the use *current jal* might be further possible through more awareness, motivational and other support activities undertaken by MACH project through RMOs and RUGs.

Effort of *dharma jal* was over 11 in the baseline but it reduced to less than 2 in impact year-1 and year-2. In the third impact year there is a slight increase (4.64) in the *dharma jal* effort. The effort of long line increased nearly triple (426.51) in the impact year-1 from 154 in the baseline and reached 1,147 in the impact year-2 and increased to 1,217 in the impact year-3 (Table 15).

No significant change was observed in the effort of *veshal jal* between the baseline and impact years. As slight increase in the effort of *thela jal* was observed in the impact years. However, use of traps was observed to increase significantly in the impact years (135 in the overall impact years) compared to 53 in the baseline year.

2.1.2.3. Gear Wise Catch

Quantity of fish catch varies by gear types and fishing methods. Table 16 shows that catch of *ber jal* and *current jal* constituted over 50% of the catch in all the four years of the first phase of project. However, in the baseline year catch of *current jal* and *ber jal* was observed almost equal but in the impact years, the catch of *ber jal* was found dominant and formed over 40% of the total catch

The catch of current jal, was found more or less unchanged over the project period of four years with a little higher in the impact year-1 but remained within the range of 5,000-6,000 kg/yr.

Table 16: Total fish catch of monitoring locations by gear typ	pes and by years in Turag-
Bongshi	

Name of	Basel	ine	Impa	ct-1	Impa	ct-2	Impa	ct-3	Av. Impa	ct years
Gears/fishin g methods	Wt. (kg)	%								
Current jal	5469.78	24.73	5971.83	12.51	4978.00	12.41	5511.96	10.28	5487.26	11.64
Ber jal	5250.24	23.74	20087.15	42.07	19160.12	47.78	23565.92	43.96	20937.73	44.41

Name of	Basel	ine	Impa	ct-1	Impa	ct-2	Impa	ct-3	Av. Impa	ct years
Gears/fishin g methods	Wt. (kg)	%								
Moi jal	2755.02	12.45	3555.14	7.45	2368.96	5.91	3441.60	6.42	3121.90	6.62
Dharma jal	1857.53	8.40	426.36	0.89	353.38	0.88	1144.09	2.13	641.28	1.36
Traps	1829.15	8.27	1233.54	2.58	1473.08	3.67	2944.97	5.49	1883.86	4.00
Jhaki jal	1670.27	7.55	3567.28	7.47	2920.42	7.28	5288.44	9.86	3925.38	8.33
Hat Borshi	1430.00	6.46	1586.81	3.32	1831.65	4.57	1950.91	3.64	1789.79	3.80
Thela jal	1005.24	4.54	2482.58	5.20	2609.06	6.51	2176.49	4.06	2422.71	5.14
Others	494.62	2.24	7864.48	16.47	2965.35	7.39	3612.98	6.74	4814.27	10.21
Long line	260.83	1.18	595.39	1.25	1400.53	3.49	2013.47	3.76	1336.46	2.83
Veshal jal	97.25	0.44	372.65	0.78	39.14	0.10	407.19	0.76	272.99	0.58
Trap in boat	0.00	0.00	0.00	0.00	0.00	0.00	124.46	0.23	41.49	0.09
Pais jal	0.00	0.00	0.00	0.00	0.00	0.00	5.31	0.01	1.77	0.00
Katha	0.00	0.00	0.00	0.00	0.00	0.00	1423.50	2.66	474.50	1.01
Total	22119.95	100.00	47743.21	100.00	40099.69	100.00	53611.28	100.00	47151.39	100.00

Jhaki jal is an important gear in the TB site, which constituted between 7-10% of the total catch (ranged from 1,670 kg - 5,288 kg) in the monitoring locations. In the impact year-3, *jhaki jal* catch formed 10% of the total catch (Table 16).

2.1.2.4. CPUE

From the catch data six common gears have been selected for determining the CPUE in the TB site. These gear included *ber jal* (seine net), moi jal, *thela jal*, jhaki jal, current jal (monofilament nylon gill net), and dhore *jal*.

Table 17 shows the CPUE of six gears in the TB and exhibits that CPUE of all the six gears operated has increased over the impact years compared to that of the baseline year. The CPUE of *ber jal* increased from 1.91 kg/day in the baseline year to 3.37 kg/day after impact period of 3 years. There have been changes in the average fishing hours of these six gears observed between the baseline and impact years. Although CPUE was found higher for all gears, average fishing hours for all gears was found less in the impact years compared to baseline situation except for the dhore jal (Table 17).

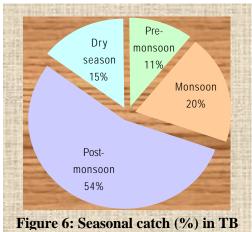
Gear	Baselin	Av.	Impact-	Av.	Impact-	Av.	Impact-	Av.	Overall	Av.
	е	Fishing	1	Fishing	2	Fishing	3	Fishing	Impact	Fishing
		Hours								
Ber Jal	1.91	5.88	3.93	4.18	2.36	3.66	3.89	3.32	3.37	3.73
Moi jal	1.50	4.82	1.84	3.98	1.60	4.50	1.81	4.61	1.76	4.33
Thela Jal	0.50	2.63	0.74	2.18	0.73	2.49	0.85	2.48	0.76	2.36
Jhaki Jal	0.49	3.47	0.70	2.40	0.50	2.08	0.67	2.29	0.62	2.26
Current	0.03	5.48	0.01	4.55	0.02	6.95	0.06	6.11	0.02	5.69
Jal	0.05	5.40	0.01	ч.55	0.02	0.75	0.00	0.11	0.02	5.07
Dhore Jal	0.04	3.49	5.87	4.18	0.71	2.49	2.83	8.55	2.88	4.72
Dhore Jal		3.49	5.87	4.18	0.71	2.49	2.83	8.55	2.88	

 Table 17: CPUE (kg/day/gear) of Selected Gears in Turag-Bangshi site

Note on standardization of current and ber jal.

2.1.2.5. Seasonal Catch

The catch composition and quantity vary over the seasons mainly due to changes in the inundation regimes, gear use, fishing pattern and intensities. In a floodplain beel situation composed of seasonal beels, as in the TB site, fish catch peaks in the post monsoon (October-December). By December, most of the fish from the beels are caught during draw down and the major fishing is done by the draining khals. Then the beel bed is used for boro (winter rice) cultivation, which starts from January.


During the dry season (January- March), water is retained in the river and the water surface area in the beels rapidly declines at the end of the dry season. The pre-monsoon (April-June) is a very crucial time of the year in TB site as the area of water coverage becomes very limited. Habitat for broodfish is limiting in the peak

limited. Habitat for broodfish is limiting in the peak dry season.

During the pre-monsoon time of the year fish availability in the area therefore is at its lowest level. Figure 6 describes the bulk of the catch in the postmonsoon (54%) and the least catch in the pre-monsoon of 11%.

2.1.2.6. Fish Species Diversity

Species diversity of fish in the TB site showed an increasing trend in the impact years compared to that of the baseline year. However, diversity of species was observed in the baseline as 82 and 81 in impact

year-1 which increased to 86 in impact year 2, and further increasing to 91 in impact year-3 (Table 18).

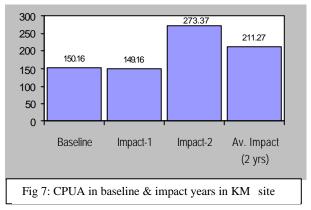
 Table18: Fish Species diversity in the Turag-Bongshi by Monitoring Locations and by

 Year

Monitoring Locations			Number of I	Fish Species obse	rved	
	Baseline	Impact-1	Impact-2	Impact-1 & 2 combined	Impact-3	Impact-1, 2 & 3 combined
Mokash Beel (South)	55	58	51	63	57	<u>69</u>
Mokash Beel (North)	58	56	62	69	52	72
Kaliadaha Beel	59	54	49	59	54	67
Mokash Khal/Solhati Khal	39	46	51	59	50	69
Turag River Section	54	55	58	67	71	79
Aowla Khal (Canal)	50	46	46	58	49	64
Aowla Beel	59	58	59	68	66	75
Bangshi River Section	67	70	67	79	75	86
Overall	82	81	86	89	91	95

The total number of fish species in the combined impact years 1, 2 and 3 was 95, which is about 16% higher than that of the baseline situation. Establishment of wetland sanctuaries is likely to have positively contributed to species richness in an environment where there is acute shortage of dry season fish refuge area. The effort control measures undertaken by RMOs during the early monsoon flooding in the beels is also likely to have contributed to the enhancement of the catch and species diversity. A list of species observed in different periods is presented in Appendix-4.

2.1.2.7. Ranking of species by quantity of catch


In the Turag Bangshi site there was a variation in species diversity observed between the baseline year and impact years. Species wise contribution in the total catch (85.64%, 83.18%, 82.31% and 80.34% in baseline, impact year-1, impact year-2 and impact year-3 respectively) was also found to vary. In both baseline and impact years, the top 20 species contribution in total catch is given in Appendix-5..Data shows that at baseline period contribution of *gura icha* was the highest about (14%) while it was the 2^{nd} highest at impact year-1 and impact year-3 but its contribution was found the highest (11%) in the total catch in impact year-2.

2.1.3. KONGSHAW-MALIJHEE SITE

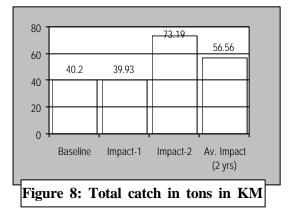

2.1.3.1. CPUA in Kongshaw-Malijhee

Figure 7 shows the CPUA (of all the monitoring locations combined) from baseline to impact year 2 and the overall average of the impact years.

Data indicated an increase in overall fish catch in the monitoring locations in Kangsha-Malijhee over the impact years compared to that of the baseline year. The overall CPUA in the baseline period for all the monitoring locations combined was 150.16 kg/ha/year, while the CPUA was observed increased to 273.37 kg/ha/year in the impact year-2 (Figure 7). Slightly lower CPUA was observed in the impact year-1 (149.16 kg/ha/y) which was due to lower water level in the impact year-1 (2001-2002) compared to that

of the baseline (2000-2001) and impact year-2 (2002-2003). Similar catch trend in relation to hydrology was also observed in other two project sites (Hail Haor and Turag-Bangshi) where the CPUA in impact-2 was lower than impact-1. It is noted that the impact-1 in Kangsha-Malijhee site corresponds with the impact-2 in Hail haor and Turag-Bangshi sites as the project started one year later in the Kangsha-Malijhee site.

The rate increase of CPUA in the overall impact period of 2 years was recorded to be over 40% more than the baseline year (Table 19).

The increased CPUA also reflected in the total catch in the impact years. The total catch was 40.2 tons in the monitoring locations of 267.72 ha during the baseline year. The total catch then increased to over 73 tons in the impact year-2 and the average catch of the overall impact period of two years was 56.56 tons (Figure 8).

The high CPUA in Bogadubi Khal was due to the fact that the khal acts as passage for fish for migrating in and out from rivers to the beels complexes. As such the khal is the main harvest point of a large floodplain area.

Monitoring Locations	Baseline	Impact-1	Impact-2	Av. Impact	% change compared to
				(2 years)	baseline
Bailla Beel	134.27	144.23	333.71	238.97	77.98
Takimari Beel	179.98	146.96	422.37	284.67	58.16
Kewta Beel	250.77	186.60	369.66	278.13	10.91
Nijla Beel	104.33	174.78	155.95	165.37	58.50
Bagadubi Khal (Canal)	1305.54	847.28	2128.45	1487.87	13.97
Baharali Kur (Malijhee River)	271.17	441.92	973.73	707.83	161.03
Aowra Bowra Beel	39.55	28.76	38.01	33.39	-15.59
Bailsha Beel	260.88	251.66	386.13	318.90	22.24
Overall	150.16	149.16	273.37	211.27	40.69

 Table 19: CPUA (kg/ha/y) by sampling locations and by years

The regression analysis (R=0.86) indicates a positive relationship between CPUA and the project intervention periods. The linear bi-variate regression determines that (R^2 =0.74) 74% variation in CPUA could be explained by the project interventions. The trend of the CPUA was found positive during the project period.

Analysis (Appendix-3) of variance (ANOVA) shows that CPUA changed significantly during the monitoring periods (p value < 0.05)

2.1.3.2. Efforts by Gear type

Gear Type		Total Gears O	perated Per Day	
	Baseline	Impact-1	Impact-2	Av. Impact (2 years)
Thela jal	31.27	21.21	45.58	33.40
Fash jal	20.41	5.70	0	2.85
Ber jal	18.42	4.69	4.11	4.40
Current jal	86.35	172.62	242.08	207.35
Traps	340.25	509.11	907.42	708.27
Hooks & lines	382.66	314.44	574.24	444.34
Jhaki jal	7.49	8.35	9.61	8.98
Dharma jal	6.20	6.20	8.55	7.38
Bana/Bara	2.05	5.44	0.73	3.09
Veshal jal	1.46	0.72	0.68	0.70
Hatani	11.47	0.45	2.14	1.30
Dewatering	0.94	0.11	0.25	0.18
Others	3.12	10.06	2.02	6.04

Table 2	0. Effort	hy gear	type (No	/dav) in	8 monitoring	locations at KM site
	v. Enuit	Dy gear	LYPE (INC	n/uay) m	o moment mg	iocations at initiation

The commonly operated gears in Kongshaw-Malijhee site during the monitoring period included *thela jal, fash jal, ber jal, current jal,* bamboo traps, hooks & long lines, *jhaki jal, dharma jal, bana/bara, veshal/khara jal, hatani,* dewatering and other minor gears. The effort by gear in the sampling location are presented in Table 20.

Effort of the *thela jal, current jal,* traps, hooks & lines, *jhaki jal* was observed to increase in impact years, while efforts of *fash jal, ber jal, veshal jal,* dewatering was observed to be reduced in the impact years. It is noted that use of the *ber jal* was discouraged in the early monsoon in RMO managed beels to allow fish to spawn and rear.

Although use of *current jal* was also discouraged in RMO managed water-bodies, there is still resistance to follow this in some areas, it was experienced that control of use of *ber jal* was easier than current *jals*. *Ber jal* is large, needs a boat and 4-6 people to operate, so it is quite visible when and where the *ber jal* is in operation. The *current jal* on the other hand is used individually and fixed under water and so is more difficult to monitor and control. It is also noted that many farmers use *current jals* in monsoon season who are reluctant to maintain the conservation norms as they do fishing on part-time basis.

There is still further need to conduct motivation campaigns through RMOs and RUGs to continue to promote the reduction in use of harmful gear in this site.

2.1.3.3. Gear Wise Catch

The quantity of catch was found to vary by gear types and by year. Table 21 shows the gear wise catch contribution in the site combining all monitoring locations. The *ber jal* contributed the highest (19%) of the total annual catch of the site at the baseline year followed by *thela*

jal (nearly 17%) and *current jal* (12%). Bamboo traps were also found an important gear as it contributed over 10% of the total annual catch. Unlike Hail Haor, dewatering catch is lower in the area and contributed to only about 8% of the annual total catch in the baseline year.

Name of Gears/fishing	Base	eline	Imp	act-1	Impa	ct-2	Av. Impact	(2 years)
methods	Wt. (kg)	%	Wt. (kg)	%	Wt. (kg)	%	Wt. (kg)	%
Thela jal	6,768.47	16.84	4,035.63	10.11	14,531.76	19.86	9,283.70	16.41
Fash jal	741.33	1.84	421.64	1.06	0	0.00	210.82	0.37
Ber jal	7,631.22	18.98	10,163.56	25.45	10,861.66	14.84	10,512.61	18.59
Current jal	4,894.97	12.18	11,716.17	29.34	15,898.65	21.72	13,807.41	24.41
Traps	4,179.59	10.40	4,364.74	10.93	7,525.31	10.28	5,945.03	10.51
Hooks & lines	2,278.06	5.67	1,394.35	3.49	3,816.39	5.21	2,605.37	4.61
Jhaki jal	2,861.31	7.12	3,459.68	8.66	6,758.91	9.24	5,109.30	9.03
Dharma jal	3,502.10	8.71	1,358.70	3.40	5,495.01	7.51	3,426.86	6.06
Bana/Bara	262.07	0.65	354.56	0.89	239.93	0.33	297.25	0.53
Veshal jal	652.44	1.62	501.03	1.25	481.53	0.66	491.28	0.87
Hatani	1,477.14	3.67	58.88	0.15	312.56	0.43	185.72	0.33
Dewatering	3,151.13	7.84	678.11	1.70	378.14	0.52	528.13	0.93
Others	1,487.51	3.70	1,051.12	2.63	1,548.62	2.12	1,299.87	2.30
Pagar	256.30	0.64	373.89	0.94	0	0.00	186.95	0.33
Katha	57.63	0.14	0	0.00	5337.09	7.29	2,668.55	4.72
Total	40,201.27	100.00	39,932.04	100.00	73,185.58	100.00	56,558.81	100.00

Table: 21 Total fish catch in Kangsha-Malijhee by gear types and by years

Like the baseline year, *ber jal, current jal, thela jal* and traps continued to dominate the catch in the two impact years and catch increased with those gear.

2.1.3.4. CPUE

Catch per unit of effort is expressed as kg/unit of effort of each gear type. Usually it is calculated as catch per gear per day and expressed in kg. From the catch data 6 commonly used gears have been selected for determining the CPUE in the site. These gears include *ber jal, thela jal, dharma jal, jhaki jal, current jal* and traps.

Table 22 shows the CPUE of six gears in the Kangsha-Malijhee site. The CPUE of all the six gears operated increased in impact year-2 and the combined impact period (2 years) except for traps. CPUE of *thela jal, dharma jal, jhaki jal* and *current jal* was less in impact year-1 compared to that of the baseline year.

The CPUE of *ber jal* increased substantially from 0.92 kg/day at the baseline year to 2.5 kg/day in the impact years 1 and 2. The CPUE of the *current jal* reduced from the baseline figure of 0.04kg/day to 0.02 kg/day in the impact year-1, but it again increased in the impact year-2.

Gear	B	aseline	Impact-1		Impact-2		Av. Impact (2 years)	
	CPUE	Av. Fishing	CPUE	Av. Fishing	CPUE	Av. Fishing	CPUE	Av. Fishing
		Hours		Hours		Hours		Hours
Ber Jal	0.92	5.80	2.56	4.75	2.45	5.33	2.50	5.08
Thela jal	0.66	3.98	0.54	2.93	0.85	3.05	0.71	3.00
Dharma Jal	1.46	9.29	0.62	10.14	1.83	10.66	1.23	10.40
Jhaki Jal	1.27	5.64	1.15	3.96	1.96	4.05	1.53	4.00
Current Jal	0.04	8.98	0.02	9.30	0.16	10.59	0.09	9.93
Traps	0.03	17.74	0.03	18.38	0.02	17.92	0.02	18.13

Table: 22 CPUE (kg/day/gear) of Selected Gears in Kangsha-Malijhee site

2.1.3.5. Seasonal Catch

The catch composition and quantity show variation over the seasons as in the other sites. This is mainly due to changes in the inundation regimes, gear use, fishing pattern, fishing intensities and availability of fish.

Combining the catch data of 2 years in the site showed that 31% if the annual catch was caught in the monsoon season (July-September), 25% in the post-monsoon (October-December), 22% in the dry season (January-March) and 22% in the premonsoon (April-June). In other sites, post-monsoon catch was the highest while in the KM site the monsoon catch is greater.

2.1.3.6. Fish Species Diversity

Diversity of fish species in the Kangsha-Malijhee site showed an increasing trend over the impact

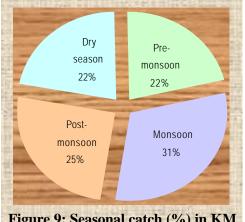


Figure 9: Seasonal catch (%) in KM

years compared to that of the baseline year. It can be seen in Table 23 that the diversity of fish species was 64 at the baseline, and increased to 67 and 71 in impact years 1 and 2. The total number of fish species recorded on average during the impact period was 78.

Monitoring Locations	Number of Fish Species observed in Monitoring Locations							
	Baseline	Impact-1	Impact-2	Av. Impact (2 years)				
Bailla Beel	46	43	41	49				
Takimari Beel	44	41	39	46				
Kewta Beel	39	45	42	56				
Nijla Beel	37	48	42	52				
Bagadubi Khal (Canal)	46	46	47	56				
Baharali Kur (Malijhee River)	32	40	37	45				
Aowra Bowra Beel	21	31	25	36				
Bailsha Beel	36	41	35	48				
Overall	64	67	71	78				

Table23: Fish Species diversity in Kangsha-Malijhee site

Although the overall species diversity has been increased in the area as a whole some monitoring locations had lower diversity of species compared to that of the baseline period. Out of 8 monitoring locations, higher species diversity was observed in 5 locations and lower in two locations. A detailed list of species observed in different periods is shown in Appendix-4.

The effort control measures undertaken by the RMOs during the early monsoon flooding in the beels may have helped to enhance production and species diversity in the areas. In addition, it is thought that establishment of sanctuaries and re-introduction of locally threatened species also contributed to increased diversity of species within the project managed water-bodies which spread over the floodplain.

2.1.3.7. Ranking of species by quantity of catch

Top 20 species are ranked according to their contribution in the annual catch which is given at Appendix-5. It shows that in each year the contribution of gura icha was found to be highest the highest (19% baseline year, 14% in impact year-1 and 18% in impact year-2). Jat *puti* ranked 2^{nd} in each year in its contribution to the annual catch. The 3^{rd} ranked species were found to vary in their contribution during the monitoring period.

2.2. FISH CONSUMPTION MONITORING

2.2.1. Hail Haor Site

The objective of the fish consumption monitoring program was to measure the changes in fish consumption patterns at the household level. It was done as this data could be gathered and analyzed with a great deal of confidence and low variability of data. In Hail Haor data was collected from a total of 450 sample households in 14 sample villages. Sample households were selected from different social classes including landless, marginal, small, medium and large farmers.

2.2.1.1. Per capita fish consumption

Table-24 presents data on per capita fish consumption by land classes at the baseline and impact years. Data shows that there is an increasing trend in per capita fish consumption (g) over the impact years compared to that of the baseline situation.

Land classes	Baseline	Impact year-1	Impact year-2	Impact year-3	% of change compared to baseline and year-3
Landless	45.97	51.48	52.14	59.40	29.21
Marginal	46.76	53.89	58.14	65.55	40.14
Small	47.17	51.08	53.40	57.20	21.26
Medium	49.99	61.22	66.90	68.16	32.35
Large	52.47	57.32	57.31	50.00	(-4.70)
All classes	46.90	53.05	54.98	60.89	29.82

 Table 24 : Per Capita Fish Consumption (g) in Hail Haor Site

Fish consumption was found to vary by social classes in the baseline and impact years. In the baseline situation, lowest per capita consumption was recorded among the landless households (45.97g) and highest (52.47g) among the large farmers.

The highest rate of increase in per capita consumption of 40.14% was recorded among the marginal households followed by medium farm households (32.35%), and then among the landless households (29.21%). Lowest rate of increase of 21.26% was observed among the small farm households.

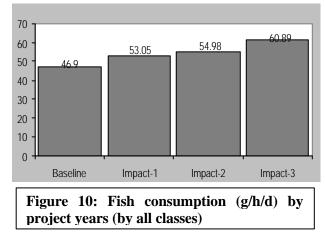
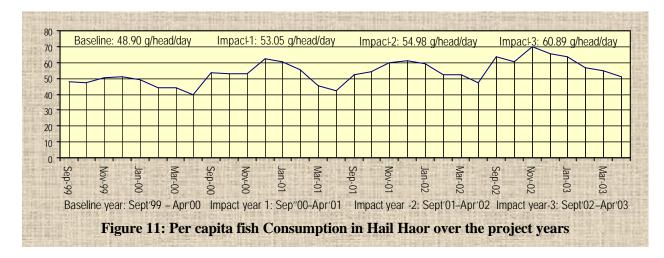



Table 24 and Figure 10 show that per capita fish consumption in Hail Haor site increased from 46.90g at the baseline year to 53.05g, 54.98g and 60.89g at impact years 1, 2 and 3 respectively.

As one would expect fish consumption by household was found to vary by month. Changes in the quantity of fish consumption by months vary due to seasonal abundance of fish, market price, access to fishing and fishing practices in a given area. Figure-11 presents the trend of per capita fish consumption by months and by project years. Usually, the rate of consumption was found higher in the draw down period and post monsoon when floodplain fish catch is higher. Lowest fish consumption was recorded in the dry months, which corresponds with March through June each year. When most of the water-bodies are dry or nearly dry and major fishing is completed, there is a shortage of available fish in wetlands as well as in the markets. Figure-11 shows that the lowest consumption was recorded in the month of April-May. However, in the baseline year, the lowest consumption recorded was in June and this continues up to August.

Fish consumption started to increase from June onwards and continued to rise over the monsoon months and peaked in the post-monsoon in November-December. During the monsoon, when the beels are flooded, local people catch fish in the seasonally flooded lands with various gear. In the post-monsoon, fish catch is also higher as in this time major fishing in the beels is done through dewatering, katha and pagar fishing. Monitoring data for the baseline and impact years also confirmed the general trend in monthly consumption rate in all the project years.

Baseline Fish consumption data was collected for 8 months from October 1999 to April 2000. So that the consumption could be compared from the baseline to the impact years in line with the fish consumption (Fish Catch Baseline ends April 2000) 8 months consumption records for the identical periods were compared. It was found that there was highly significant difference of per fish consumption from the baseline to the impact years by months and periods (p-value < 0.05) Appendix-3.

2.2.1.2. Non-fish high protein food consumption

Besides fish, people also consumed other high protein food in their diet including meat, pulses, and eggs. Data on other non-fish high protein consumption was also collected from the sample households. Table 25 and Appendix-6 present the data on non-fish protein consumption by sample households. Consumption of pulses was found less during the impact years compared to that of baseline year. The consumption of meat and other food was observed higher over the impact years (Table 18) than that of baseline year. Negligible changes in the consumption of egg and milk were observed in the baseline and impact years.

Items	Baseline	Impact Y-1	Impact Y-2	Impact Y-3
Pulses	11.57	10.78	9.99	10.37
Meat	4.92	6.72	6.89	8.66
Egg (No.)	0.04	0.05	0.06	0.06
Milk	5.96	3.75	3.71	5.51

Table 25: Other Non-Fish Protein Consumption (g/h/d) in HH site

In rural areas, people collect and consume fish mainly from two sources, either they catch fish themselves or they buy fish from local markets or from fishers. The villagers also get a very small amount of fish from their relatives and neighbors as gifts. Consumed fish by sources whether bought, caught or gift is presented in Table 26.

Sources	Baseline	Impact Y- I	Impact Y-2	Impact Y-3
Caught	31.34	27.79	26.97	24.63
Bought	66.49	69.97	71.32	73.18
Gift	2.17	2.23	1.72	2.19

Table 26: Fish Consumption by sources (%) in HH Site

Consumed fish by sources whether bought or caught and gift is presented in Table 29.

A slightly higher figure for caught source at the baseline year was possibly due to control of fishing efforts in the water-bodies managed under RMOs formed under MACH project. People who get AIGA (alternative income generating activities) support from MACH are able to increase purchasing and so the poor people bought a higher quantity of fish for consumption.

2.2.1.3. Consumption by species groups

In Bangladesh people consume a variety of fish species over the seasons. However, it depends on the availability of fish in the market and price. From the monitoring made in the selected households, in Hail Haor the sample households consumed 107 species of fish during the baseline year, while 110, 110 and 88 species of fish were consumed in the impact year 1, 2 and 3 respectively.

Species groups	Baseline	Impact-1	Impact-2	Impact -3
Small Fishes	55.98	44.78	38.04	39.87
Snakeheads	14.85	16.18	21.33	21.25
Small Cat Fishes	9.36	10.22	7.80	8.78
Dry fishes	4.46	4.35	3.57	2.95
Prawns	3.92	7.16	6.87	5.67
Major Carps	2.84	3.86	4.66	4.21
Exotic Species	2.11	3.33	4.99	5.94
Hilsha	1.70	3.90	5.06	2.42
Large Cat Fishes	1.51	1.91	3.38	2.74
Eels	1.26	1.18	0.84	1.16
Minor Carps	1.14	1.39	1.96	2.07
Knife Fishes	0.86	1.71	1.45	2.95
Others	0.01	0.01	0.04	0.00
Overall	100.00	100.00	100.00	100.00

Table27: Fish Species Group Wise Consumption (%) in HH

All fish species recorded during the fish consumption-monitoring period were classified into 13 groups. The quantity (by 90) consumed by species groups is presented in Table 30. Data shows that species in the small fish group contributed the most in consumption both in baseline as well as in impact years. The small fish group contributed 55.98% in the baseline year but was less in the impact years (44.78% in impact year-1, 38.04% in impact year-2 and 39.87% in impact year-3.

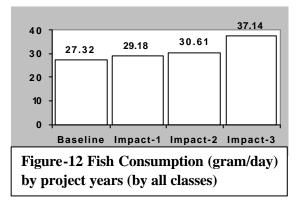
The four species of Snakeheads ranked second in the list of species groups consumed by the sample households in Hail Haor site. In the baseline year, snakeheads contributed 14.85% while it increased over the impact years and contributed over 21.25% in the impact year-3.

The percentage of consumed fish in all other groups was found to be higher than that of the baseline situation. It indicates that abundance of different species is now more available in the rural markets. However, there are many factors that influence the quantity of fish species consumed such as price and purchasing power to name a couple.

2.2.2. TURAG-BANGSHI SITE

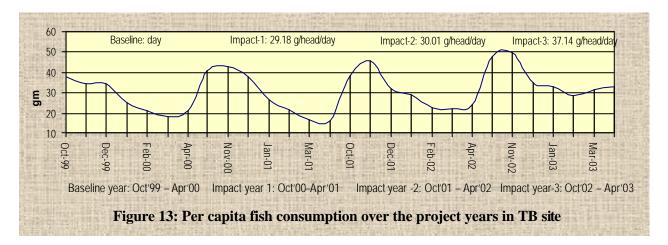
Household fish consumption monitoring was started in October 1999 in Turga-Bangshi and data were collected from 280 sample households comprising of different land classes of 8 sample villages within the project area.

2.2.2.1. Per capita fish consumption


An increase in per capita fish consumption in the Turag-Bangshi site has been observed in the impact years compared to that of the baseline situation (October'99 through April'00). The overall quantity of per capita fish consumption is lower in T-B site compared that of the Hail Haor site, which might be due to higher availability of fish in Hail Haor area due to the size of the fishery in the haor.

Land	Baseline	Impact-1 Impact-2 Impact-3		% of change compared	
classes	(Oct'99-Apr'00)	(Oct'00-Apr'01)	(Oct'01-Apr'02)	(Oct'02-Apr'03)	to baseline & impact y-3
Landless	27.64	29.32	30.46	37.56	35.89
Marginal	27.10	29.34	29.39	34.53	27.42
Small	26.73	27.57	27.85	37.80	43.51
Medium	28.17	30.44	35.54	38.27	35.85
Large	25.18	28.10	33.81	40.62	61.32
All classes	27.32	29.18	30.61	37.14	35.94

Table 28: Per Capita Fish Consumption (gram/day) in TB site


Table 28 and figure 12 show per capita fish consumption by the households of different land classes during the baseline and impact years at Turag Bangshi site

An increase in fish consumption was observed among all land size classes in the impact year-3 compared to that of the baseline year. On an average, combining all the households, a 36% increase in per capita fish consumption was observed in the impact year-3. However, there were variations in the rate of increase among the different land size classes. The highest rate of increase of about 61% was observed among the large farm households and the lowest (27.42%) among marginal farm households (Table 31).

Significant rate of increase (about 36%) was also observed among the landless poor households in the impact year-3 compared to the baseline year.

Monthly per capita fish consumption data is presented in Figure-13. The general trend, for fish consumption rate was found lowest at the end of the dry season-early monsoon (March through May). It is at this time that the rate of consumption was increased as the monsoon started and the trend continues to increase peaking at the post-monsoon period in October-November. From December the rate of consumption again started to fall and in the dry

months of March & April reached its lowest point.

The rate of fish consumption by months or season follows the seasonal fish production trend, which is largely governed by the hydrological regimes. During the dry season, most of waterbodies in the area become dry except for a very small part in Kalidaha and Aola Beel. The water flow in the Turag-Bangshi River also reached its lowest level during the dry months. During the dry months water is retained in the kums only.

2.2.2.2. Non-fish high protein food consumption

Data collected on other non-fish protein consumption from the households can be seen on table 29. The consumption of pulses was found to be less during the impact years 1 and 2 compared to the baseline year. However, a slightly higher consumption of pulses was observed in impact year 3 but that was still less than baseline situation (Table 29 and Appendix-6). During the impact years, meat and milk consumption was found higher compared to that of the baseline situation.

Items	Baseline	Impact -1	Impact-2	Impact-3
Pulses	14.83	9.69	11.01	13.19
Meat	8.65	11.08	15.08	14.27
Egg (No.)	0.04	0.04	0.06	0.06
Milk	17.07	20.81	25.59	30.76

Table 29: Per Capita non-fish protein Consumption (g)

2.2.2.3. Sources of fish caught and fish purchased

Sources	Baseline	Impact-1	Impact-2	Impact-3
Caught	26.95	23.23	17.98	18.5
Bought	69.33	72.27	77.48	76.52
Gift	03.62	4.49	4.54	4.98
Others	00.10	00.02	0.00	0.00

Table 30: Fish Consumption by sources (%) in TB

The data on consumed fish by sources is seen in Table 30. Data shows that there was an increasing trend of percentage of bought fish from baseline to impact years. The lowest percentage was 69.33% at baseline and the highest, 77.48% recorded in the impact year-2. 2.2.2.4 Species group wise consumption All recorded species consumed were classified into 13 groups. The quantity in terms of % fish consumed by species groups is presented in

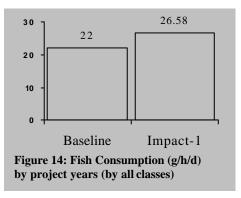
Table 30.

Species groups	Baseline	Impact-1	Impact-2	Impact -3	
Small Fishes	41.24	40.25	26.52	27.01	
Major Carps	16.34	19.29	21.05	24.54	
Exotic Species	13.90	12.08	17.67	20.29	
Prawns	8.14	9.29	8.56	4.77	
Small Cat Fishes	4.45	2.78	3.29	1.83	
Snakeheads	4.16	5.13	3.92	4.58	
Eels	3.60	1.99	1.85	1.70	
Large Cat Fishes	3.30	4.29	12.58	12.50	
Hilsha	3.13	3.60	3.24	0.96	
Dry Fishes	0.88	0.69	0.70	0.96	
Minor carps	0.42	0.26	0.10	0.16	
Knife Fishes	0.35	0.30	0.38	0.55	
Others	0.09	0.04	0.14	0.15	
Overall	100.00	100.00	100.00	100.00	

The data indicates that the contribution of consumed small fish was less than (27.01%) in impact year-3 compared to the baseline. While major Carps, Exotic Species, Snakeheads, Large Cat fishes, Dry fishers and Knife fishesconsumption increased by 24.54%, 20.29%, 4.58%, 12.50%, 0.96% and 0.55% from 16.34%, 13.90%, 4.16%, 3.30%, 0.88% and 0.35% respectively. In TB site dry fish consumption increased.

2.2.3. KONGSHAW-MALIJHEE SITE

Household fish consumption monitoring in Kongshaw-Malijhee site was carried out in 280 sample households comprising of different land classes of 7 selected villages within the project area.


2.2.3.1 Per capita fish consumption

An increase in per capita fish consumption in Kangsha-Malijhee site has been observed in the impact-1 (January'02 through December'02) compared to that of the baseline situation.

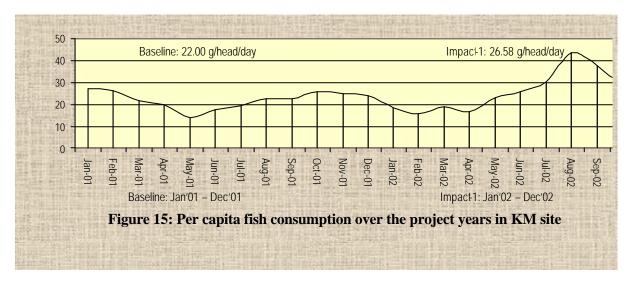

Land classes	Baseline	Impact-1
Landless	22.05	26.43
Marginal	22.67	29.19
Small	20.92	23.02
Medium	21.12	25.92
Large	21.69	23.34
All classes	22.00	26.58

 Table 32: Per Capita Fish Consumption (g) in KM site

Table 32 and Figure 14 present per capita fish consumption by the households of different land classes for baseline and impact years of the KM site. Compared to the baseline year, there is an increase in per capita fish consumption in the impact-1 (Figure 14).

Monthly per capita fish consumption data in Figure 15 shows that rate of fish consumption was higher in August in impact year and also a bit higher in November while at baseline higher rate was found in January than that of other months.

2.2.3.2. Non-fish high protein food consumption

Items	Baseline	Impact Y-1		
Pulses	5.99	5.29		
Meat	8.42	8.21		
Egg (No.)	0.05	0.07		
Milk	14.42	13.82		

 Table33: Per Capita non-fish protein Consumption (g)

The consumption of non fish protein such as pulses, meat and milk was less during the impact year-1 compared to baseline (Table-33 and Appendix-7). During impact years consumption of egg was found to be higher compared to that of the baseline situation.

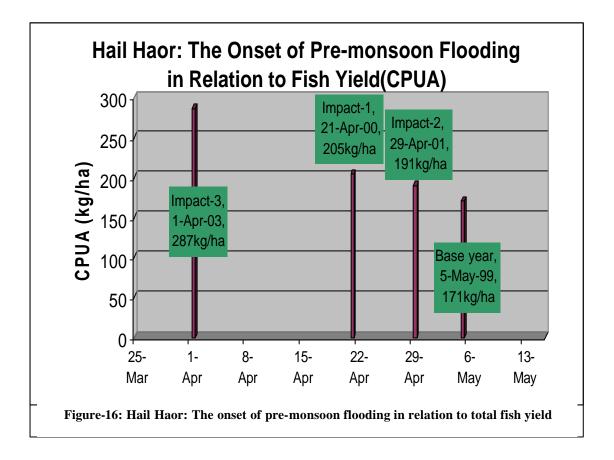
2.2.3.3. Sources of fish caught and fish bought

Table34: Fish Consumption by sources (%) in KM Site

Sources	Baseline	Impact-I
Caught	43.32	39.52
Bought	51.85	55.07
Gift	04.80	05.41
Others	0.02	0.00

The data on the fish consumed by sources is presented in Table 34. The highest percentage of fish source (51.85%) was purchased by households in baseline year. This trend continued in the impact years as well with the purchasing of fish increasing.

Statistical analysis showed that there was highly significant difference within land classes and between the sources caught and bought (P-value =.000 < .05). Among the periods, sources caught & bought were almost same, test shows that the difference was highly in significant (P-value = 0.997 > .05) (Appendix-3).


2.2.3.4. Species group wise consumption

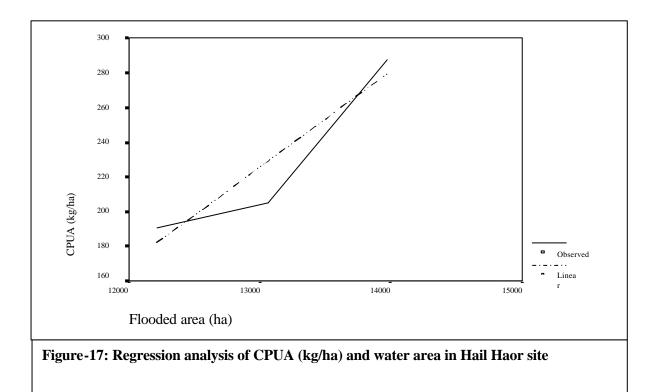
Species groups	Baseline	Impact -1
Small Fishes	44.68	46.55
Snakeheads	10.97	9.92
Prawns	9.40	8.45
Exotic Species	8.05	12.38
Dry fishes	6.18	3.90
Major Carps	6.01	8.55
Hilsha	5.72	2.70
Small Cat Fishes	3.24	2.90
Eels	2.89	2.27
Large Cat Fishes	2.59	1.98
Minor Carps	0.13	0.09
Knife Fishes	0.03	0.10
Others	0.11	0.21

Table35: Fish Species Group-wise Consumption (%) in KM Site

2.3. HYDROLOGY AND FISH CATCH (HAIL HAOR SITE)

Based on 5 years of hydrology data, it is observed that the water levels of Hail Haor begin to rise in April and May. The date of pre-monsoon flood commencement is one of the major factors which impacts yearly fish production as this is the fish breeding time. The earlier the flood-water level rises in April, the more breeding is likely to take place with more production to be expected if other conditions remain unchanged.

Bi-variate (CPUA and water level) regression analysis indicates that there was positive correlation (R=0.85) between CPUA and retaining of water level during dry season (March-April)


Another regression analysis shows that there is high correlation (R=0.99) between onsets of the flooding time with fish catch yield, CPUA (kg/ha) and the value of $R^2 = 0.98$ indicates that the CPUA explained 98% variation with onset of pre-monsoon flooding time.

Monitoring period	Highest Water Extent Of Hail Haor (ha)	CPUA (kg/ha)
Baseline	-	171.08
Impact-1	13063 (June, 2000)	205.05
Impact-2	12215 (June, 2001)	190.75
Impact-3	13964 (June, 2002)	287.28

Table 36: Relationship of CPUA and extent of flood

Table 36 shows that there was a relation of fish catch with extent of flood. It reflects that the highest CPUA (kg/ha) was recorded in the impact year-3 which corresponds to the higher flooding in that year.

The regression analysis shows that is highly correlation (R = 0.93) between CPUA (kg/ha) with extent of flooded/inundated area (ha) in Hail Haor site. The value of $R^2 = 0.87$ explained that CPUA about 87% variation with the extent of flood area.

2.4. VEGETATION AND WILDLIFE MONITORING

2.4.1. Vegetation Diversity

In MACH project sites a transect based vegetation survey was conducted to understand the status of the flora in the area MACH is working in terms of number of species. The survey was conducted twice a year once during the dry season and once during the wet season. The MACH project started activities in the Kangsha-Malijhee site one year later than the other two sites. The vegetation survey of the KM site was therefore done for the baseline and impact year-1 only. Comparative data of vegetation survey in three sites is given in Table 40 below.

Total number of aquatic species was recorded as 107 at the baseline period combining the dry and wet seasons in the Hail Haor. The number of species reduced to 98 in the impact year and again observed to increase to 117 in the impact year-2.

Abundance of aquatic vegetation was found to be lowest in the Turag-Bangshi site compared to that of Hail Haor. A total of 51 species was observed during the baseline period followed by 48 in impact year-1 and 60 in impact year-2. Compared to the Turag-Bangshi site, diversity of habitats and surface area is larger in Hail Haor.

The Kangsha-Malijhee site, vegetation ranged from 55 species in the baseline year to 72 in the impact year-1. Data was not collected in the Kangsha-Malijhee for the impact year-2

Table37: Species of Aquatic Vegetation in Baseline, Imapct-1 and Impact-2 in three sites

Project Sites	Baseline		Impact-1			Impact-2			
	Dry	Wet	Total	Dry	Wet	Total	Dry	Wet	Total
Hail Haor	85	84	107	83	92	95	91	98	117
Turag-Bangshi	19	39	51	31	41	48	44	53	60
Kangsha-Malijhee	47	43	55	58	64	72	-	-	-

Variation in the number of aquatic vegetation species from year to year is partly due to annual fluctuation in water level and flooding pattern. It was observed that in a year when early flood contributed to sudden rise of water, vegetation cover and diversity is less than in the year when water level rises gradually.

2.4.2. Wildlife Diversity

In all the three MACH sites a very gross wildlife survey was carried out to document the abundance of wildlife population in the area. The monitoring was done twice a year, once in the dry season and the other in the wet season following selected transects through the majority of the habitats at each site.

Field data were collected through direct observation along the transect lines as well as through interviews with local people with knowledge of the local wildlife. The project started one year later in the Kangsha-Malijhee site, where the results have been incorporated for two years only while three years findings are presented for Hail Haor and Turag-Bangshi sites. A summary of wildlife monitoring data for three sites is presented in Table 41.

Hail Haor Site: In the Hail Haor site, 6 species of amphibians have been recorded over the three-year monitoring period. During baseline and impact year-2, 5 species were observed

while in the impact year-1, 6 species were recorded along the same transect. No seasonal variation in the abundance of amphibian species was observed.

Abundance of reptile fauna ranged from a minimum of 19 in the impact year-1 to a maximum of 21 in impact year-2 with a baseline figure of 20. No seasonal variation in the abundance of reptiles was observed in the area.

Abundance of bird species was found higher in the Hail Haor ranging from a minimum of 110 in the impact year-1 to a maximum of 133 in the impact year-2. Record of impact year-1 revealed an abundance of 110 bird species. Seasonal variation was observed in abundance of birds, higher numbers of birds was observed in dry season except in the baseline year.

Mammalian diversity ranged from a minimum of 22 at the baseline period to a maximum of 26 in the impact year-2. No seasonal variation was observed in abundance of mammalian fauna in the area.

Total diversity of wildlife fauna in Hail Haor site ranged from a minimum of 158 in the impact year-1 to a maximum of 185 in the impact year-2. The number of wildlife species recorded in the baseline period was 166.

Turag-Bangshi Site: Six amphibian species were recorded in the Turag-Bangshi site over the monitoring period of three years. Six species were recorded in the baseline year while 5 species were observed in the impact years. No seasonal variation was observed in amphibian diversity except that the 6 species were observed during wet season in the TB site.

Organism		Baseline	:		Impact-1	l		Impact-2	
U	Dry	Wet	Both	Dry	Wet	Both	Dry	Ŵet	Both
				Hai	il Haor Site				
Amphibians	5	5	5	6	6	6	5	5	5
Reptiles	18	17	20	19	19	19	21	21	21
Birds	56	88	119	110	96	110	132	101	133
Mammals	17	19	22	22	23	23	26	26	26
Total	96	129	166	157	144	158	184	153	185
				Turag	g-Bangshi Si	te			
Amphibians	5	6	6	5	5	5	5	5	5
Reptiles	14	16	19	16	16	16	16	16	16
Birds	75	70	101	89	81	96	106	88	107
Mammals	14	16	19	18	16	19	21	21	21
Total	108	108	145	128	118	136	148	130	149
				Kangsh	a-Malijhee	Site			
Amphibians	5	5	5	5	5	5	0	0	0
Reptiles	17	18	18	19	19	19	0	0	0
Birds	83	83	84	108	93	108	0	0	0
Mammals	17	17	17	16	16	16	0	0	0
Total	122	123	124	148	133	148	0	0	0

Table 38: Wildlife species recorded in Baseline, Impact -1, Impact -2 in MACH sites

The species of birds in the area ranged from a minimum of 96 observed in the impact year-1 to a maximum of 107 in the impact year-2. The abundance of bird species in the baseline period (101 species) was a bit higher than that of the impact year-1 but lower than impact year-2 (Table 38). Higher abundance of birds was observed in the dry season in the monitoring years than in the wet season.

Manual species recorded in the area ranged from a minimum of 19 in the baseline and impact year-1 to a maximum of 21 in the impact year-2. Higher abundance of mammalian fauna was observed in the impact year-2 compared to the baseline and impact year-1. No seasonal variation in the abundance of species was observed.

In the Turag-Bangshi site 145 wildlife species were recorded at the baseline period and 149 species in the impact years. Combining all classes of species, higher abundance of wildlife fauna was recorded in the impact years.

Kangshow-Malijhee Site: Five species of amphibians were recorded both in the baseline and impact year. No seasonal variation was observed in the number of species sighted of amphibians over dry and wet seasons.

Number of reptile species ranged from 18 in the baseline period to 19 in the impact year. No seasonal variation in the sighting of reptiles was observed.

The number of bird species sighted were observed less in the Kangsha-Malijhee site compared to Hail Haor and Turag-Bangshi sites. A total of 108 species of birds were observed in the area during the monitoring period of two years, of which 84 was observed in the baseline year and 108 in the impact year. Higher abundance of birds observed in the dry season.

Fewer mammalian species were found less in the area compared to two other sites. Presence of 17 species was recorded in the baseline year while 16 were observed in the impact year. No seasonal variation was observed in case of mammalian fauna.

The overall number of wildlife fauna observed was higher in the impact year than in the baseline year. At the baseline period 124 species were sighted which increased to 148 in the final years of measured impact. As temporal data is limited and variability of year to year conditions great, it is difficult to draw firm conclusions with regard to impacts of the project. There did appear to be maintaining or increasing trends in species present. Continued long-term management actions and habitats protection are required to enhance and conserve the wildlife in any given area.

3. Selected Conclusions

MACH has demonstrated a co-management approach for sustainable management of wetland resources. The approach involves the community, local government, upazila, district and national administration. The project has been implemented in three different wetland ecosystems. MACH has emphasized data collection and analysis with sufficient rigor to demonstrate trends in the wetland resources before and during interventions. The followings are selected conclusions drawn:

Fish yield and biodiversity

- 1. The variation in the Catch per Unit of Area (CPUA) of the different wetland types is thought to be attributable to varied habitat and varied fishing practices and management.
- 2. There was significant variation of fishing effort as well as quantity of fish catch by seasons as expected.
- 3. Species diversity (fish) found in the project sites ranged from 64 to 82 in baseline period and 78 to 95 in the impact years. Varieties of small fish species and prawns make up the bulk of the annual production. Project interventions demonstrated positive impacts on biodiversity as a number of species have been re-established.
- 4. CPUA increased by 33% in Hail Haor, 113% in Turag-Bangshi and 41% in KM site during the impact years compared to that of the baseline year.
- 5. Both from data indicators and anecdotal evidence it is estimated that co-managed sanctuaries as well as restricted fishing during critical periods contributed to increase fish production and bio-diversity in the project areas.

Fish consumption

- 6. Per-capita fish consumption increased in all three sites (20-35%) when compare the averaged impact years with that of the baseline.
- 7. The beel resident fish contribute significantly to the diet of the very poor.
- 8. Major part of the fish consumed (55-75%) by the households are purchased from local markets
- 9. Rate of per capita fish consumption peaked in the post-monsoon period corresponding with the higher catch from wetlands during that period.
- 10. Per capita fish consumption was found to be higher in project villages than that of the national average. This is likely was to the location of villages inclose proximity to wetlands where people enjoy better access to fishing and fish availability.

Aquatic plants and wildlife

- 11. Species diversity of aquatic vegetation and wildlife were found to be higher during the impact period compared to that of the baseline period.
- 12. The wetlands of Hail haor continued 107-117 species of aquatic plants.
- 13. Wildlife population and diversity was found higher in Hail Haor site possibly due to diversity of physical features, large perennial water body and surrounding forests.

Production and Hydrology

- 14. Quantity of fish catch was found to have positive correlation to the hydrology of a given year.
- 15. Highest CPUA (kg/ha/year) recorded in the year corresponds with higher flooding extents.
- 16. Higher annual fish production corresponds with early inundation of wetlands with the onset of pre-monsoon flooding
- 17. There is further study required to determine the appropriate area of sanctuary to wetland to ensure the maximum sustainable yields from this type of intervention.
- 18. Further study is needed to continue to determine the relationship between the hydrology and fish production and to suggest options for water management for having floodplain sustainable fisheries yield and biodiversity.

APPENDICES

			Apppendix 1
	MACH Fish Catch Monit	oring Form	Habitat
M M D D Y Y			
1. Information about Gear and Fis1.1 Gear:1.2 No. of C	• •	1.3 Length (n	n):
1.4 Width (m) size (mm):	1.5 Diameter (r	n):	1.6 Mesh
1.7 Fishermen type: 1.8 Involve	e person	1.9	Villages:
Age Sex	Age Sex 1.10	Distance from villag	ge to habitat (km):
1.11 Total number of this type of g	ear operated today		
2. Fishing time:2.1 Fishing began at:	2.2 Time spent	for present catch:	
2.3 Expected to end at	2.4 E	Expected fishing hou	r:
3. Species, number and weight of Species Number Weig Species Number Weig Species Number Weig Species Number Weight Species Number Weight Total weight (sample) [in case of su	ght		ies Number Image: Second state s
5. Fishing rights (code):	Name	of	Enumerator:

Appendix – 2

	Fish	n Co	MACH (Form-2) HH Code onsumption and Natural Resource Collection Monitoring Form											
Projec	ct Area	:				Villa	ge:		_ E	ate:				
Enum	erator:				HH Members: Name									
					-)1 IIIuti		Noon: Mea	al		Today	Nig	ht: Me	al
•	er			1110	Meal Today Noon: Meal Number							_	r	
Spec	1		easure	d Sou	r	Spec		Measure	Sour	Spec			easured	l Sour
ies	ght		(1)/	ceo		ies	ght		ce of		ght		(1)/	ce of
	(g)	Est	timate				(g)	Estimate	Fish		(g)	Es	timated	
	(8/		(2)				(8)	d (2)					(2)	
Memb	ers	M.	F	Childı	e	Male.	F	emale	Childr	Male.	Fer	nale	C	hildren
eaten		n	••			en	••							
(When	n Metho	d: 1.	. Self 2	2. Estim	ate	d, Sour	ce: 1. C	atch 2. Buy	3. Gift	4. Other	s (Men	tion)		
2. Oth	er Prot	tein	Consu	mption										
Toda	ay (Moi	rnin	g: brea	akfast)]	Foday (N	Noon: luncl	n)]	Г <mark>oday</mark> (Nigh	nt: dinn	er)
Name	e of Foo	d	We	eight	Name of Food Weight Name of Foo					o d	We	eight		
			(g)	/No.				(g)/	No.				(g)	/No.
Consu	0			nembers										
Male:.	Fe	emal	eC	Children		Male:	Fen	naleC	hildren	Male:	F	emal	eC	Children
										•••••	••			
	ı Catch													
Wh	o fisheo	d	Age	Sex		Gear Used	Fishin Durati	0		Fish s	old		Fish aten	Habit at

		n (Hours)	Caught	Weigh t (g)	Tak a	Weight (g)	

4. Other Natural Resources Harvesting Data: (If any member of your HH collect other natural resources as aquatic vegetation, bird, wild animal, frog etc. from Haor/Beel/River/Khal etc.)

	Reeds			Fodder/Gra	ISS		Mollusks	5		Birds	Birds	
Who	Quanti	purpo	Who	Quantity	Purpos	Who	Quanti	Purpo	who	Quanti	Purpose	
	ty	se			e		ty	se		ty		

Other resources: specify

Who	Quanti	purpo	Who	Quantity	Purpos	Who	Quanti	Purpo	who	Quanti	Purpose
	ty	se			e		ty	se		ty	

5. Income from Selling of other Natural Resources

Ree	eds										
Qty. sold	Taka	Qty. sold	Tak a	Qty. sold	Taka	Qty. sold	Taka	Qty. sold	Taka	Qty. sold	Taka

Comments_____

Sources	Sum of	d.f.	Mean	F	P-value
	Squares		Square		
Baseline-Intervention	1858329.487	4	464582.3	13.497	.000
			72		
periods					
Error	826095.060	24	34420.62		
Error	020000.000		8		
Total			0		
	2684425		28		

Analysis of variance for CPUA and intervention at Hail Haor

Analysis of variance for CPUA and intervention at Turag-Bongshi

Sources	Sum of Squares	d.f.	Mean Square	F	P-value
Baseline-Intervention periods	8797079.237	4	2199269. 809	3.370	.023
Error	18271982.77 6	28	652570.8 13		
Total	27069062	32			

Analysis of variance for CPUA and intervention at Kongsha-Malijhee

Source	Sum of Squares	d.f.	Mean Square	F	P-value
Baseline-Intervention periods	4317462.485	3	1439154. 162	6.271	.003
Error	4819141.600	21	229482.9 33		
Total	9136604	24			

Results of ANOVA shows that CPUA change significantly (p-value <.05) during the monitoring periods in all three project sites.

Hail Haor Site

Table 1: ANOVA (Analysis of Variance) for per capita consumption of different land classes

Source	Sum of Squares	df	Mean Square	F	P-value
Land classes	239.185	4	59.796	3.536	.040
Monitoring	372.883	3	124.294	7.350	.005
years					
Error	202.933	12	16.911		
Total	815.001	19			

The ANOVA for per capita shows that there was significant difference within the land classes (P-value <0.05). In case of periods (base and impact years) the per capita consumption of fish was found that there was also highly significant difference (P-value <0.05).

Table 2: ANOVA for per capita consumption in different months

Source	Sum of Squares	df	Mean Square	F	P-value
Month	693.154	7	99.022	14.390	.000
Monitoring	797.795	3	265.932	38.645	.000
years					
Error	144.509	21	6.881		
Total	1635.458	31			

Fish consumption data at the baseline situation collected only for 8 months. But during the impact years consumption monitoring data collected round the years. ANOVA did for comparable period only. There was also highly significant difference for per capita fish consumption among months as well monitoring years, p-value < .05.

Table 3: ANOVA for sources of fish at Hail Haor

Source	Sum of Squares	df	Mean Square	F	P-value
Caught-Bought		1	3622.282	230.874	.001
Period	.09134	3	.03045	.002	1.000
Error	47.068	3	15.689		
Total	3669.441	7			

ANOVA reflects the highly significant different between caught and bought of consumption of fish (P-value< .05). While considered different years, the p- value strongly reflects that there was no significant difference of sources of fish within comparable years (P-value>.05).

Turag Bangshi Site

Table 1: ANOVA for per capita consumption of different land classes at Turag-Bangshi Site

Source	Sum of Squares	df	Mean Square	F	P-value
Land classes	27.323	4	6.831	1.940	.168
Monitoring	329.707	3	109.902	31.212	.000
years					
Error	42.253	12	3.521		
Total	399.283	19			

ANOVA shows that per capita consumption within the land classes was very insignificant (P-value >.05). Per capita consumption between the comparable monitoring years (base and impact situation) was found to be highly significant (p-value <.05).

Table 2: ANOVA for per capita consumption in different months at Turag-Bangshi

Source	Sum of Squares	df	Mean Square	F	P-value
Month	1807.869	6	301.312	27.549	.000
Monitoring	365.506	3	121.835	11.139	.000
years					
Error	196.871	18	10.937		
Total	2370.246	27			

ANOVA shows that there was highly significant difference of per capita fish consumption by months and monitoring years (base & impact), p-value < .05.

Table 3: ANOVA for sources of fish at Turag-Bongshi

Source	Sum of Squares	df	Mean Square	F	P-value
Caught-Bought	5456.990	1	5456.990	169.143	0.001
Monitoring	.412	3	.137	.004	1.000
years					
Error	96.788	3	32.263		
Total	5554.19	7			

ANOVA reflects highly significant different between caught and bought of consumption of fish (P-value<0.05). While considered different years, the p- value strongly shows there was no significant difference of fish consumption among the comparable Monitoring years (P-value>0.05).

Kongsha-Malijhee Site

Table 1: ANOVA	for per	capita	consumption	of	different	land	classes at	Kongsha-
Malijhee								

Source	Sum of Squares	df	Mean Square	F	P-value
Land classes	19.346	4	4.836	2.387	.210
Period	37.830	1	37.830	18.674	.012
Error	8.103	4	2.026		
Total	65.279	9			

ANOVA shows that per capita consumption within the land classes was insignificant (P-value >.05). There was a significant change in per capita consumption between the comparable period (base and impact situation) since P-value <.05.

Table 2: ANOVA for per capita consumption in different months at Kongsha-Malijhee

Source	Sum of Squares	df	Mean Square	F	P-value
Month	509.758	11	46.342	.991	.506
Period	106.176	1	106.176	2.270	.160
Error	514.428	11	46.766		
Total	1130.362	23			

ANOVA shows that the per capita fish consumption among months and periods (base & impact) was insignificant (P-value > .05).

Table 3: ANOVA for sources of fish at Kongsha - Malijhee

Source	Sum of Squares	df	Mean Square	F	P-value
Caught-Bought	144.962	1	144.962	11.766	0.181
Period	0.084	1	0.084	0.007	0.948
Error	12.32	1			
Total	157.37	3			

Two years data are not sufficient for statistical interpretation in terms of ANOVA. However, analysis of variance reflects that the variation of sources among themselves were insignificant since p-value =0.181 > .05 and the variation of sources among the period were highly insignificant since p-value = 0.948 > 0.05) in Sherpur site.

Confidence Interval of per capita consumption

Period	Per capita consumption	95% Confidence interval
Baseline	46.79g	46.79±3.12
Impact-1	53.22g	53.22±5.65
Impact-2	54.86g	54.86±3.95
Impact-3	60.81g	60.81±5.14

Table: Confidence interval of per capita consumption in different period at HH site

It has already mentioned earlier that the per capita consumption very at different situations (baseline and impact years). Table represents the value of observed per capita fish consumption at 95% confidences interval. At baseline per capita consumption was found to be fish 46.79 \pm 3.12. The values 53.22 \pm 5.65, 54.86 \pm 3.95 and 60.81 \pm 5.14 were observed in impact year-1, year-2 and year-3 respectively.

Table: Confidence interval of per capita consumption in different period at TB site

Period	Per capita consumption	95% Confidence interval
Baseline	27.57g	27.57 ± 7.19
Impact-1	27.48g	27.48±5.54
Impact-2	27.82g	27.82±5.37
Impact-3	34.96g	34.96±5.76

Table shows that at baseline situation the value of per capita fish consumption observed at 95% confidence interval was found to be 27.57 ± 7.19 while it was 27.82 ± 5.37 and 34.96 ± 5.76 observed at impact year-1, year-2 and year-3 respectively.

Table: Confidence interval of per capita consumption in different period at KM site

Period	Per capita consumption	95% Confidence interval
Baseline	22.33	22.33±2.45
Impact-1	26.54	26.54±5.62

Table showing that in KM site the observed per capita fish consumption at 95% confidence interval was found to be 22.33 ± 2.45 . Impact years 1 it was observed 26.54 ± 5.62 .

Appendix 4.1

Hail Haor Site Species Diversity Comparison by different Intervention

Species		Baseli	Impact-	Impact-	Impact-
Name(Bengali)	Scientific Name	ne	1	2	3
Jat Puti	Puntius sophore	V	v	V	v
Kanchan Puti	Puntius conchonius	V	V	V	V
Tit Puti	Puntius ticto	V	V	V	V
Jhili Puti	Puntius gelius	V	V	V	V
Futani Puti	Puntius phutunio	V	V	V	V
Teri Puti	Puntius terio	V	Х	Х	V
Mola Puti	Puntius guganio	Х	Х	V	V
Shar Puti	Puntius sarana	Х	Х	V	V
Chola Puti	Puntius chola	V	V	Х	V
Thai Shor Puti	Puntius gonionotus	V	V	V	V
Bagha Puti	Puntius stigma	Х	Х	Х	V
	Amblypharyngodon				
Mola	mola	V	v	V	v
Chela	Oxygaster pholo	V	V	V	V
Chep Chela	Chela laubuca	V	V	V	V
Ranga Chanda	Chanda ranga	V	v	V	V
Lamba Chanda	Chanda nama	V	v	V	V
Gol Chanda	Chanda baculis	V	v	V	V
Chapila	Gudusia chapra	V	v	V	V
Khalisha	Colisa fasciatus	V	v	V	V
Lal Khalisha	Colisa lalius	V	v	V	V
Chuna Khalisha	Colisa laboisa	V	v	V	V
Dankina	Rasbora daniconius	V	v	V	V
Meni/Bheda	Nandus nandus	V	v	V	V
Koi	Anabas testudineus	V	v	V	V
Kali/Napti Koi	Badis badis	V	v	V	V
Bele	Glossogobius giurius	V	v	V	V
Rani	Botia Dario	V	v	V	V
Kachki	Corica soborna	V	Х	Х	Х
Kaikla	Xenentodon cancila	V	V	V	V
Poa	Pama pama	Х	v	Х	V
	Lepiodocephalus				
Gutum	guntea	v	v	V	V
Khalla/Kharshulla	Mugil corsula	Х	Х	V	Х
Tin Chokha	Aplocheilus panchax	V	V	V	V

Species Name(Bengali)	Scientific Name	Baseli ne	Impact-	Impact- 2	Impact- 3
Hame(Bengan)	Mastacembelus		•	<u> </u>	J
Boro Baim	armatus	v	v	v	v
Boro Baim	Mastacembelus	V	V	V	V
Guchi Baim	pancalus	v	v	v	v
	Macrognathus	V	V	V	V
Tara Baim	aculeatus	v	v	v	v
Kuicha	Cuchia cuchia	v	V	V	V
Taki	Channa punctatus	v	V	V	V
Shol	Channa striata	v	V	V	V
Gojar	Channa marulius	V	V	V	V
Cheng	Channa gachua	V	V	V	V
Vangra	Labeo boga	V	X	V	X
Goinna	Labeo gonius				
Tatkini	Crossocheilus latius	V X	V V	V X	V X
Raek	Cirrhinus reba	X	X	X	× V
Air				X	
	Mystus aor	V	V		V
Bajri Tengra Golsa	Mystus tengara	V	V	V	V
	Mystus cavasius	V	V	V	V
Tengra Kabagi Tangra	Mystus vittatus	V X	V X	V X	V
Kabasi Tengra	Futropiiohthuoucoho				V
Bacha	Eutropiichthys vacha	V	V	V	V
Baspata/Kazuli	Danio devario	X	X	X	V
Boal	Wallago attu	V	V	V	V
Pangas Kani Dahala	Pangasius pangasius	X	X	X	V
Kani Pabda	Ompok bimaculatus	V	V	V	V
Pabda/Madhu	Ompok pabda	V	V	V	V
Pabda/Kowakata/Ghor					
akata					
Chaka/Gangina/Kowak	Chaka abaka				
ata	Chaka chaka	V	V	V	V
China	Heteropneustes				
Shing	fossilis Olarius hatraahus	V	V	V	V
Magur	Clarius batrachus	V	V	V	V
African Magur	Clarias gariepinus	X	V	X	X
Chital	Notopterus chitala	X	Х	Х	V
Fali	Notopterus				.,
Foli	notopoterus	V	V	V	V
Telapia	Oreochromis	V	V	V	V
	(Telapia)				
	mossambicus				
Rui	Labeo rohita	V	V	V	V
Catla Catla catla		V	X	V	V
Mrigel Cirrhinus mrigala		V	V	V	V
Kalibaush	Labeo calbasu	V	V	V	V
Silver Carp	Hypophthalmichthys molitrix	X	V	X	V
Grass Carp	Ctenopharyngodon	V	V	V	V

Species		Baseli	Impact-	Impact-	Impact-
Name(Bengali)	Scientific Name	ne	1	2	3
	idellus				
Miror Carp	Cyprinus carpio	Х	V	Х	Х
Comon Carp/Karfu	Cyprinus carpio	V	V	V	V
Bighead Carp	Aristechthys nobilis	Х	Х	Х	V
	Macrobrachium				
Gura Echa	lamrrei	V	v	V	V
Narkeli Chela	Oxygaster bacalia	V	v	V	V
Naftani/Berkul	Osphronemus(Ctenop s) nobilis	V	V	V	V
Ghaura	, Clupisoma garua	V	Х	Х	Х
Tepa/Futkora	Tetraodon cutcutia	V	v	v	v
Buth Koi/Bali					
Chata/Balitora	Nemacheilus batia	Х	v	v	Х
Satka Chingri	Macrobrachium	Х	Х	V	V
Dimua/Kathalia Echa		V	V	Х	V
Thengua Echa	Macrobrachium birmanicus	V	V	V	V
Elong		V	Х	Х	Х
Gora Gutum/Ganga					
Shagor		V	v	v	Х
Boiragi Echa		V	Х	Х	Х
Reckha Kholisha		V	V	V	V
Sheild Kholisha	Colisa labiosus	V	V	V	Х
Kecho Bime	Ophichthys boro	V	Х	Х	Х
Potka	Tetraodon patoca	V	V	V	V
Senia (Eusufi)	Gagata cenia	Х	V	V	Х
Moa	Rohtee cotio	Х	V	V	V
Το	tal	71	71	69	76

Appendix 4.2

Turag Bongshi

Species Diversity Comparison by different Intervention

Species		Baselin	Impact-	Impact-	Impact-
Name(Bengali)	Scientific Name	е	1	2	3
Jat Puti	Puntius sophore	V	V	V	V
Kanchan Puti	Puntius conchonius	V	V	V	V
Tit Puti	Puntius ticto	V	V	V	V
Jhili Puti	Puntius gelius	V	V	V	V
Futani Puti	Puntius phutunio	V	Х	Х	Х
Chola Puti	Puntius chola	V	V	V	V
Thai Shor Puti	Puntius gonionotus	V	V	V	V
Bagha Puti	Puntius stigma	V	V	V	V
Mola	Amblypharyngodon mola	V	V	V	V
Dhela	Amblypharyngodon microlepis	V	V	V	V
Chela	Oxygaster pholo	V	V	V	V

Species Name(Bengali)	Scientific Name	Baselin e	Impact-	Impact- 2	Impact- 3
Chep Chela	Chela laubuca	V	Х	Х	Х
Ranga Chanda	•		V	V	V
Lamba Chanda	Chanda nama	V V	V	V	v
Gol Chanda	Chanda baculis	v	V	V	V
Chapila	Gudusia chapra	v	V	V	V
Khalisha	Colisa fasciatus	V	V	V	V
Lal Khalisha	Colisa Ialius	V	V	V	V
Chuna Khalisha	Colisa laboisa	v	V	V	V
Dankina	Rasbora daniconius	V	V	V	V
Koi	Anabas testudineus	V	V	V	V
Kali/Napti Koi	Badis badis	V	V	V	V
Bele	Glossogobius giurius	V	V	V	V
Rani	Botia Dario	V	V	V	V
Kachki	Corica soborna	V	V	V	V
Kaikla	Xenentodon cancila	V	v V	V	V
Poa	Pama pama	v V	v V	V	
					V
Gutum	Lepiodocephalus guntea	V	V	V	V
Khalla/Kharshulla	Mugil corsula	V	V	V	V
Peali Tin Chakha	Aspidoparia morar	V	V	V	V
Tin Chokha	Aplocheilus panchax	V	V	V	V
Fesha	Raconda russeliana	V	X	X	V
Boro Baim	Mastacembelus armatus	V	V	V	V
Guchi Baim	Mastacembelus pancalus	v	v	v	v
Tara Baim	Macrognathus aculeatus	v	V	V	v
Kuicha	Cuchia cuchia	v	V	Х	v
Taki	Channa punctatus	V	V	V	V
Shol	Channa striata	v	V	V	v
Cheng	Channa gachua	V	V	v	V
Vangra	Labeo boga	v	V	V	Х
Tatkini	Crossocheilus latius	V	V	v	V
Air	Mystus aor	v	V	v	v
Guzi air/Guzkata	Mystus seenghala	V	Х	v	V
Bagha Air	Bagarius bagarius	V	V	v	V
Batasi	Clupisoma (Pseudentropious) atherrinoides	V	V	V	V
Golsa	Mystus cavasius	v	v	v	v
Tengra	Mystus vittatus	V	V	V	V
Bacha	Eutropiichthys vacha	v	V	V	V
Baspata/Kazuli	Danio devario	v	V	V	V
Boal	Wallago attu	v	V	V	V
Rita	Rita rita	V	V	V	V
Silong	Silonia silondia	v	V	V	v
Kani Pabda	Ompok bimaculatus	v	V	V	v
Pabda/Madhu	Ompok pabda	v	v	V	v

Species Name(Bengali)	Scientific Name	Baselin e	Impact- 1	Impact- 2	Impact- 3
Pabda/Kowakata/Ghor					
akata					
Chaka/Gangina/Kowak					
ata	Chaka chaka	V	v	v	v
Shing	Heteropneustes fossilis	V	V	V	V
Magur	Clarius batrachus	V	V	V	V
Foli	Notopterus notopoterus	V	V	V	V
Hilsha (Jatka)	Tenualosa ilisha	V	v	V	v
Telapia	Oreochromis (Telapia) mossambicus	V	V	V	V
Rui	Labeo rohita	V	V	V	V
Catla	Catla catla	V	V	V	V
Mrigel	Cirrhinus mrigala	V	V	V	V
Kalibaush	Labeo calbasu	V	V	V	V
	Hypophthalmichthys				
Silver Carp	molitrix	V	v	v	v
Comon Carp/Karfu	Cyprinus carpio	V	V	V	V
Gura Echa	Macrobrachium lamrrei	V	V	V	V
	Macrobrachium				
Golda Echa	rosenbergii	V	V	V	V
Narkeli Chela	Oxygaster bacalia	V	Х	Х	Х
Naftani/Berkul	Osphronemus(Ctenops) nobilis	V	Х	Х	Х
Ghaura	Clupisoma garua	V	V	V	V
Tepa/Futkora	Tetraodon cutcutia	V	V	V	V
Buth Koi/Bali Chata/Balitora	Nemacheilus batia	V	v	v	v
Satka Chingri	Macrobrachium	V	V	V	V
Putul	Botia lohachata	V	Х	Х	Х
Dimua/Kathalia Echa		V	V	V	V
Gora Gutum/Ganga					
Shagor		V	V	V	V
Gugri Bila		V	V	V	V
Potka	Tetraodon patoca	V	V	V	Х
Nayan bali		V	V	V	V
GangChela/Ghora					
Chel		V	X	V	V
Peashi	Aspidoparia jaya	V	V	V	V
Mola Puti	Puntius guganio	Х	X	V	V
Shar Puti	Puntius sarana	Х	X	X	V
Meni/Bheda	Nandus nandus	Х	V	V	V
Gojar Channa marulius		Х	V	V	V
Goinna Labeo gonius		Х	Х	Х	V
Bajri Tengra	Mystus tengara	Х	Х	V	V
Kabasi Tengra		Х	Х	V	V
Pangas	Pangasius pangasius	Х	Х	V	Х
African Magur	Clarias gariepinus	Х	v	Х	v

Species		Baselin	Impact-	Impact-	Impact-
Name(Bengali)	Scientific Name	е	1	2	3
Chital	Notopterus chitala	X	X	X	v
	Ctenopharyngodon				
Grass Carp	idellus	X	v	v	v
Miror Carp	Cyprinus carpio	Х	V	V	V
Bighead Carp	Aristechthys nobilis	Х	Х	Х	V
Gang Tengra	Gagata viridescens	Х	Х	V	Х
Tengra (Batasio)	Batasio batasio	Х	V	Х	V
Senia (Eusufi)	Gagata cenia	Х	Х	V	V
Mamoli Chapila		Х	V	V	V
Chenua		Х	Х	Х	V
Total		82	81	86	91

Appendix 4.3

Kongshow Malijhee

Species diversity comparison of Kongshow-Malijhee by different Intervention

Bengali Name	Scientific Name	Baseline	Impact-1	Impact-2
Jat Puti	Puntius sophore	V	V	V
Kanchan Puti	Puntius conchonius	V	V	V
Tit Puti	Puntius ticto	V	V	V
Jhili Puti	Puntius gelius	V	Х	Х
Futani Puti	Puntius phutunio	Х	Х	V
Mola Puti	Puntius guganio	V	Х	Х
Shar Puti	Puntius sarana	V	V	V
Chola Puti	Puntius chola	V	Х	V
Thai Shor Puti	Puntius gonionotus	V	V	V
Bagha Puti	Puntius stigma	Х	V	V
Mola	Amblypharyngodon mola	v	V	v
Dhela	Amblypharyngodon microlepis	v	v	v
Chela	Oxygaster pholo	V	V	V
Chep Chela	Chela laubuca	V	V	V
Ranga Chanda	Chanda ranga	V	V	V
Lamba Chanda	Chanda nama	V	V	V
Gol Chanda	Chanda baculis	V	V	V
Chapila	Gudusia chapra	V	V	V
Khalisha	Colisa fasciatus	V	V	V
Lal Khalisha	Colisa lalius	V	V	V
Chuna Khalisha	Colisa laboisa	V	V	V
Dankina	Rasbora daniconius	V	V	V
Meni/Bheda	Nandus nandus	Х	Х	V
Koi	Anabas testudineus	V	V	V
Kali/Napti Koi	Badis badis	V	V	V
Bele	Glossogobius giurius	V	v	V
Rani	Botia Dario	V	V	V
Kaikla	Xenentodon cancila	V	V	V
Poa	Pama pama	Х	V	V
	Lepiodocephalus			
Gutum	guntea	V	V	V
Tin Chokha	Aplocheilus panchax	V	Х	V
Boro Baim	Mastacembelus armatus	v	v	v
	Mastacembelus	V	v	v
Guchi Baim	pancalus	v	v	V
Tara Baim	Macrognathus aculeatus	v	v	v
Kuicha	Cuchia cuchia	V	V	V
Taki	Channa punctatus	V	V	V
Shol	Channa striata	Х	V	V

Bengali Name	Scientific Name	Baseline	Impact-1	Impact-2
Gojar	Channa marulius	Х	V	V
Cheng	Channa gachua	V	V	V
Bata	Labeo bata	V	V	V
Vangra	Labeo boga	V	Х	V
Goinna	Labeo gonius	Х	V	V
Tatkini	Crossocheilus latius	V	V	V
Raek	Cirrhinus reba	Х	V	V
Nandil	Labeo nandina	V	V	v
Air	Mystus aor	V	Х	Х
Guzi air/Guzkata	Mystus seenghala	X	X	v
Bagha Air	Bagarius bagarius	V	X	X
	Clupisoma			
	(Pseudentropious)			
Batasi	atherrinoides	V	v	v
Bajri Tengra	Mystus tengara	Х	Х	v
Golsa	Mystus cavasius	V	V	V
Tengra	Mystus vittatus	V	V	V
Kabasi Tengra		X	V	X
Boal	Wallago attu	V	V	V
Pangas	Pangasius pangasius	X	V	v
Silong	Silonia silondia	X	X	V
Kani Pabda	Ompok bimaculatus	V	X	X
Pabda/Madhu				
Pabda/Kowakata/Ghor				
akata	Ompok pabda	v	v	v
Shing	Heteropneustes fossilis	V	V	V
Magur	Clarius batrachus	v	V	V
African Magur	Clarias gariepinus	X	V	X
Foli	Notopterus notopoterus	V	V	V
Hilsha (Jatka)	Tenualosa ilisha	X	V	v
	Oreochromis (Telapia)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Telapia	mossambicus	Х	v	v
Rui	Labeo rohita	V	V	V
Catla	Catla catla	v	V	V
Mrigel	Cirrhinus mrigala	v	V	V
Kalibaush	Labeo calbasu	v	V	V
	Hypophthalmichthys	v	v	V
Silver Carp	molitrix	v	v	v
Circl Calp	Ctenopharyngodon	•	V	V
Grass Carp	idellus	v	v	v
Miror Carp	Cyprinus carpio	V	V	V
Comon Carp/Karfu	Cyprinus carpio	V	V	V
Bighead Carp	Aristechthys nobilis	X	X	V
Gura Echa	Macrobrachium lamrrei		N V	
	Macrobrachium	v	V	V
Golda Echa		V	V	Х
	rosenbergii	v	V	^
Naftani/Berkul	Osphronemus(Ctenops) nobilis	v		v
INAITAIII/DEIKUI) HUDIIIS	Х	V	Х

Bengali Name	Scientific Name	Baseline	Impact-1	Impact-2
Ghaura	Clupisoma garua	V	V	Х
Tepa/Futkora	Tetraodon cutcutia	V	V	V
Gora Gutum/Ganga				
Shagor		V	V	V
Gugri Bila		Х	Х	V
Potka	Tetraodon patoca	V	Х	Х
Senia (Eusufi)	Gagata cenia	Х	V	Х
GangChela/Ghora				
Chel		v	Х	v
Batai		V	V	Х
		64	67	71

Serial	Bengali		Total	
No.	Name	Scientific Name	Catch(kg)	%
				14.2
1	Jat Puti	Puntius sophore	28670.77	7
				13.6
2	Khalisha	Colisa fasciatus	27405.98	4
				12.7
3	Meni/Bheda	Nandus nandus	25677.14	8
4	Koi	Anabas testudineus	17285.39	8.60
5	Boal	Wallago attu	17214.30	8.57
6	Taki	Channa punctatus	16419.21	8.17
		Amblypharyngodon		
7	Mola	mola	15564.51	7.75
8	Tengra	Mystus vittatus	6708.62	3.34
9	Shol	Channa striata	6173.42	3.07
10	Shing	Heteropneustes fossilis	4819.26	2.40
	Chuna			
11	Khalisha	Colisa laboisa	3696.42	1.84
		Mastacembelus		
12	Guchi Baim	pancalus	3080.75	1.53
13	Lal Khalisha	Colisa Ialius	2872.78	1.43
14	Kaikla	Xenentodon cancila	2863.97	1.43
15	Tara Baim	Macrognathus aculeatus	2613.37	1.30
16	Gura Echa	Macrobrachium lamrrei	2418.78	1.20
17	Foli	Notopterus notopoterus	1950.30	0.97
18	Dankina	Rasbora daniconius	1849.02	0.92
19	Gojar	Channa marulius	1335.38	0.67
20	Magur	Clarius batrachus	1195.42	0.60
				94.4

Hail Haor Top 20 Species caught in Baseline

Total

Hail Haor Top 20 Species caught in Impact1

Serial	Bengali		Total	
No.	Name	Scientific Name	Catch(kg)	%
		Amblypharyngodon		23.4
1	Mola	mola	56457.06	5
				16.5
2	Jat Puti	Puntius sophore	39849.67	5
3	Meni/Bheda	Nandus nandus	16084.78	6.68
4	Taki	Channa punctatus	11990.25	4.98
5	Tengra	Mystus vittatus	10318.25	4.29
6	Khalisha	Colisa fasciatus	8528.61	3.54
7	Foli	Notopterus notopoterus	8129.11	3.38
8	Kaikla	Xenentodon cancila	7518.10	3.12
		Mastacembelus		
9	Guchi Baim	pancalus	5959.15	2.48

9

	Total			86.3 3
20	Boal	Wallago attu	3185.50	1.32
19	Gojar	Channa marulius	3238.86	1.35
18	Rui	Labeo rohita	3269.66	1.36
17	Magur	Clarius batrachus	3315.94	1.38
16	Chuna Khalisha	Colisa laboisa	3521.06	1.46
15	Shing	Heteropneustes fossilis	3608.20	1.50
14	Dankina	Rasbora daniconius	3759.94	1.56
13	Kanchan Puti	Puntius conchonius	4012.00	1.67
12	Shol	Channa striata	4329.84	1.80
11	Ranga Chanda	Chanda ranga	5345.27	2.22
10	Thengua Echa	Macrobrachium birmanicus	5450.03	2.26

Total

Hail Haor Top 20 Species caught in Impact2

Serial	Bengali		Total	
No.	Name	Scientific Name	Catch(kg)	%
				11.7
1	Jat Puti	Puntius sophore	26404.26	9
2	Taki	Channa punctatus	19788.50	8.83
3	Meni/Bheda	Nandus nandus	19274.69	8.61
4	Khalisha	Colisa fasciatus	13455.95	6.01
5	Shol	Channa striata	9274.41	4.14
6	Foli	Notopterus notopoterus	8899.75	3.97
		Amblypharyngodon		
7	Mola	mola	7221.32	3.22
		Mastacembelus		
8	Guchi Baim	pancalus	6996.02	3.12
9	Kaikla	Xenentodon cancila	6500.81	2.90
10	Shing	Heteropneustes fossilis	6388.15	2.85
11	Tengra	Mystus vittatus	6119.48	2.73
12	Magur	Clarius batrachus	5704.37	2.55
	Kanchan			
13	Puti	Puntius conchonius	5437.88	2.43
14	Gojar	Channa marulius	5428.37	2.42
15	Boal	Wallago attu	5420.01	2.42
16	Bele	Glossogobius giurius	5402.42	2.41
	Thengua	Macrobrachium		
17	Echa	birmanicus	4947.78	2.21
18	Gura Echa	Macrobrachium lamrrei	4549.10	2.03
19	Koi	Anabas testudineus	4439.62	1.98
	Chuna			
20	Khalisha	Colisa laboisa	4071.84	1.82
				78.4
	Total			5

Serial	Bengali		Total	
No.	Name	Scientific Name	Catch(kg)	%
				11.8
1	Jat Puti	Puntius sophore	39824.88	1
2	Meni/Bheda	Nandus nandus	25254.10	7.49
3	Taki	Channa punctatus	23930.10	7.09
4	Khalisha	Colisa fasciatus	23205.06	6.88
5	Tengra	Mystus vittatus	22102.87	6.55
6	Foli	Notopterus notopoterus	20500.39	6.08
7	Shol	Channa striata	14868.10	4.41
8	Kaikla	Xenentodon cancila	14659.90	4.35
		Mastacembelus		
9	Guchi Baim	pancalus	10663.38	3.16
10	Magur	Clarius batrachus	8672.98	2.57
		Amblypharyngodon		
11	Mola	mola	8507.05	2.52
12	Gojar	Channa marulius	8439.76	2.50
13	Rui	Labeo rohita	7482.63	2.22
	Kanchan			
14	Puti	Puntius conchonius	7274.73	2.16
15	Shing	Heteropneustes fossilis	6381.67	1.89
16	Koi	Anabas testudineus	6329.78	1.88
17	Gol Chanda	Chanda baculis	6054.58	1.80
18	Dankina	Rasbora daniconius	5747.79	1.70
19	Goinna	Labeo gonius	5470.92	1.62
20	Boal	Wallago attu	4975.66	1.48
				80.1

Hail Haor Top 20 Species caught in Impact3

Total

4

Serial No.	Bengali Name	Scientific Name	Total	%
NO.	Name		Catch(kg)	
1	Gura Echa	Macrobrachium Iamrrei	3007.58	13.6 0
2	Tengra	Mystus vittatus	1928.78	8.72
3	Jat Puti	Puntius sophore	1892.23	8.55
5	Jaci uli	Channa	1092.20	0.00
4	Taki	punctatus	1650.65	7.46
		Mastacembelus		
5	Boro Baim	armatus	1515.35	6.85
6	Chapila	Gudusia chapra	1421.24	6.43
	Guchi	Mastacembelus		
7	Baim	pancalus	1000.13	4.52
		Glossogobius		
8	Bele	giurius	846.24	3.83
_		Macrognathus		
9	Tara Baim	aculeatus	767.39	3.47
10	Lamba Chanda	Chanda nama	712.41	3.22
10	Tit Puti	Puntius ticto		3.22 2.43
12	Air		537.89 501.89	2.43
12	Chola Puti	Mystus aor Puntius chola	482.19	2.27
13	Catla	Catla catla	482.19	2.10
14			467.92	2.10
15	Mrigel	Cirrhinus mrigala Heteropneustes	407.92	2.12
16	Shing	fossilis	408.50	1.85
10	Satka	10001110	400.00	1.00
17	Chingri	Macrobrachium	344.13	1.56
18	Shol	Channa striata	342.36	1.55
19	Boal	Wallago attu	323.62	1.46
20	Chela	Oxygaster pholo	310.98	1.41
				85.6
	Total			4

Turag-Bangshi Top 20 Species caught in Baseline

Turag-Bangshi Top 20 Species caught in Impact1

Serial No.	Bengali Name	Scientific Name	Total Catch(kg)	%
				12.4
1	Jat Puti	Puntius sophore Macrobrachium	5949.44	6
2	Gura Echa	lamrrei	4156.36	8.71
3	Chapila	Gudusia chapra Channa	3501.96	7.34
4	Taki	punctatus	3402.66	7.13
5	Tengra	Mystus vittatus	2866.06	6.00
6	Tit Puti	Puntius ticto	2865.13	6.00

Serial	Dongoli		Total	
No.	Bengali Name	Saiantifia Nama		%
NO.	Name	Scientific Name	Catch(kg)	70
7	Dala	Glossogobius	0500.00	
7	Bele	giurius	2506.22	5.25
	Guchi	Mastacembelus		
8	Baim	pancalus	1931.25	4.05
9	Rui	Labeo rohita	1442.27	3.02
		Mastacembelus		
10	Boro Baim	armatus	1349.37	2.83
11	Bagha Puti	Puntius stigma	1322.84	2.77
12	Mrigel	Cirrhinus mrigala	1157.62	2.43
		Xenentodon		
13	Kaikla	cancila	1082.41	2.27
14	Chola Puti	Puntius chola	1065.12	2.23
	Satka			
15	Chingri	Macrobrachium	1013.08	2.12
16	Air	Mystus aor	978.86	2.05
17	Shol	Channa striata	904.87	1.90
	Gol			
18	Chanda	Chanda baculis	859.14	1.80
	Chanda	Lepiodocephalus	000111	
19	Gutum	guntea	688.99	1.44
.0	Lamba	ganoa	000.00	
20	Chanda	Chanda nama	671.80	1.41
				83.1
	Total			8

Turag-Bangshi Top 20 Species caught in Impact2

Serial	Bengali		Total	
No.	Name	Scientific Name	Catch(kg)	%
		Macrobrachium		11.2
1	Gura Echa	lamrrei	4491.04	0
				10.6
2	Jat Puti	Puntius sophore	4261.03	3
3	Chapila	Gudusia chapra	3246.43	8.10
4	Tit Puti	Puntius ticto	3015.94	7.52
		Channa		
5	Taki	punctatus	2725.46	6.80
		Glossogobius		
6	Bele	giurius	2273.36	5.67
		Mastacembelus		
7	Boro Baim	armatus	2111.81	5.27
_	Guchi	Mastacembelus		
8	Baim	pancalus	1944.24	4.85
9	Tengra	Mystus vittatus	1474.75	3.68
	Guzi			
	air/Guzkat	Mystus		
10	а	seenghala	1004.88	2.51
11	Gol	Chanda baculis	985.48	2.46

Serial	Bengali		Total	
No.	Name	Scientific Name	Catch(kg)	%
	Chanda			
	Ranga			
12	Chanda	Chanda ranga	861.92	2.15
	Lamba			
13	Chanda	Chanda nama	784.39	1.96
14	Chela	Oxygaster pholo	775.70	1.93
15	Shol	Channa striata	710.73	1.77
16	Mrigel	Cirrhinus mrigala	622.25	1.55
		Macrognathus		
17	Tara Baim	aculeatus	477.75	1.19
	Satka			
18	Chingri	Macrobrachium	437.57	1.09
		Amblypharyngod		
19	Mola	on mola	402.80	1.00
		Xenentodon		
20	Kaikla	cancila	397.84	0.99
				82.3
	Total			1

Turag-Bangshi Top 20 Species caught in Impact3

Serial	Bengali		Total	
No.	Name	Scientific Name	Catch(kg)	%
				10.1
1	Jat Puti	Puntius sophore	5441.40	5
		Macrobrachium		
2	Gura Echa	lamrrei	5110.27	9.53
3	Chapila	Gudusia chapra Channa	4472.55	8.34
4	Taki	punctatus	3283.16	6.12
5	Tit Puti	Puntius ticto Glossogobius	3227.58	6.02
6	Bele	giurius	2785.19	5.20
7	Rui	Labeo rohita	2282.38	4.26
	Guchi	Mastacembelus		
8	Baim	pancalus	2038.96	3.80
9	Tengra	Mystus vittatus	1914.31	3.57
10	Mrigel	Cirrhinus mrigala	1542.66	2.88
11	Chola Puti Gol	Puntius chola	1538.41	2.87
12	Chanda Guzi	Chanda baculis	1389.49	2.59
	air/Guzkat	Mystus		
13	a Lamba	seenghala	1296.16	2.42
14	Chanda	Chanda nama	1207.98	2.25
15	Bagha Puti	Puntius stigma	1137.30	2.12
16	Shol	Channa striata	1085.35	2.02

Serial No.	Bengali Name	Scientific Name	Total Catch(kg)	%
		Xenentodon		
17	Kaikla	cancila	953.31	1.78
	Ranga			
18	Chanda	Chanda ranga	804.95	1.50
	Satka	-		
19	Chingri	Macrobrachium	786.97	1.47
20	Chela	Oxygaster pholo	774.41	1.44
				80.3
	Total			4

Kongshow-Malijhee Top 20 Species caught in Baseline

Serial	Bengali			
No.	Name	Scientific Name	Total Catch(kg)	%
		Macrobrachium		19.2
1	Gura Echa	lamrrei	7716.65	0
				16.0
2	Jat Puti	Puntius sophore	6460.73	7
				11.5
3	Boal	Wallago attu	4652.29	7
	-	•••		11.0
4	Tengra	Mystus vittatus	4427.49	1
_	- . ·	Channa	0074.00	
5	Taki	punctatus	2371.99	5.90
C	Quahi Daim	Mastacembelus	2450.00	E 07
6	Guchi Baim	pancalus	2159.66	5.37
7	Bele	Glossogobius	1937.50	4.82
7 8	Tit Puti	giurius Puntius ticto	1389.74	4.02 3.46
0	TIL FULI	Lepiodocephalus	1309.74	3.40
9	Gutum	guntea	1269.40	3.16
5	Outum	Macrognathus	1205.40	0.10
10	Tara Baim	aculeatus	1229.07	3.06
10	Comon	acalcalas	1220.01	0.00
11	Carp/Karfu	Cyprinus carpio	1021.09	2.54
	e aip/i taita	Mastacembelus	1021100	2.0 .
12	Boro Baim	armatus	685.84	1.71
	Gol			
13	Chanda	Chanda baculis	671.31	1.67
14	Rui	Labeo rohita	555.34	1.38
15	Chuna	Colisa laboisa	489.21	1.22

	Total			5
				95.7
20	Kalibaush	Labeo calbasu	191.28	0.48
19	Chanda	Chanda nama	253.66	0.63
	Lamba			
18	Shing	Heteropneustes fossilis	282.87	0.70
17	Kaikla	cancila	314.92	0.78
		Xenentodon		
16	Khalisha Chela	Oxygaster pholo	415.07	1.03

Kongshow-Malijhee Top 20 Species caught in Impact1

Serial	Bengali			
No.	Name	Scientific Name	Total Catch(kg)	%
		Macrobrachium		14.1
1	Gura Echa	lamrrei	5636.87	2
-			- / - / - 0	13.6
2	Jat Puti	Puntius sophore	5451.86	5
•	D 1	Glossogobius	0070.04	0.44
3	Bele	giurius	3370.91	8.44
4	Boal	Wallago attu	3163.48	7.92
F	Taki	Channa	2040.05	7 20
5	Taki	punctatus	2948.85	7.39
6	Tengra Comon	Mystus vittatus	2459.67	6.16
7		Cyprinus carpio	1974.23	4.94
1	Carp/Karfu	Macrognathus	1974.23	4.94
8	Tara Baim	aculeatus	1876.16	4.70
9	Tit Puti	Puntius ticto	1835.04	4.60
0	ner de	Lepiodocephalus	1000.04	4.00
10	Gutum	guntea	1319.37	3.30
		Mastacembelus		
11	Guchi Baim	pancalus	1314.44	3.29
12	Mrigel	Cirrhinus mrigala	1203.00	3.01
	Thai Shor	Puntius		
13	Puti	gonionotus	1010.86	2.53
	Gol			
14	Chanda	Chanda baculis	689.55	1.73
		Hypophthalmicht		
15	Silver Carp	hys molitrix	674.10	1.69
		Mastacembelus		
16	Boro Baim	armatus	531.63	1.33
. –	Chuna		40.4 = 0	
17	Khalisha	Colisa laboisa	434.50	1.09
40		Ctenopharyngod		1 0 4
18	Grass Carp	on idellus	416.57	1.04
19	Chela	Oxygaster pholo	385.57	0.97
20	Kaikla	Xenentodon	378.46	0.95

Serial No.	Bengali Name	Scientific Name	Total Catch(kg)	%
		cancila		
				92.8
	Total			5

Kongshow-Malijhee Top 20 Species caught in Impact2

Serial No.	Bengali Name	Scientific Name	Total Catch(kg)	%
		Macrobrachium		18.2
1	Gura Echa	lamrrei	13325.19	1
				11.8
2	Jat Puti	Puntius sophore	8641.28	1
		Channa		
3	Taki	punctatus	5761.29	7.87
4	Tengra	Mystus vittatus	5425.99	7.41
	Comon			
5	Carp/Karfu	Cyprinus carpio	5106.87	6.98
6	Mrigel	Cirrhinus mrigala	4425.81	6.05
		Mastacembelus		
7	Guchi Baim	pancalus	4387.88	6.00
8	Boal	Wallago attu	4032.97	5.51
		Glossogobius		
9	Bele	giurius	3813.12	5.21
		Macrognathus		
10	Tara Baim	aculeatus	2467.45	3.37
	Thai Shor	Puntius		
11	Puti	gonionotus	2249.73	3.07
		Mastacembelus		
12	Boro Baim	armatus	1493.92	2.04
		Lepiodocephalus		
13	Gutum	guntea	1350.50	1.85
14	Tit Puti	Puntius ticto	959.30	1.31
		Ctenopharyngod		
15	Grass Carp	on idellus	923.75	1.26
	Gol			
16	Chanda	Chanda baculis	856.14	1.17
17	Rui	Labeo rohita	775.31	1.06
18	Bagha Puti	Puntius stigma	658.68	0.90
	Chuna	-		
19	Khalisha	Colisa laboisa	629.58	0.86
20	Kalibaush	Labeo calbasu	567.08	0.78
				92.7
	Total			1

Appendix-6

Per Capita non fish Protein Consumption (g) in Sreemongal (Hail Haor Site)

Pulses

Land Class	Baseline	Impact Y-1	Impact Y-2	Impact Y-3
Landless	11.04	9.77	9.86	10.34
Marginal	12.06	11.40	10.45	10.35
Small	13.28	13.07	11.01	11.09
Medium	11.66	10.62	8.70	9.76
Large	11.53	14.62	9.28	10.17
All Class	11.57	10.78	9.99	10.37

Meat

Land Class	Baseline	Impact Y-1	Impact Y-2	Impact Y-3
Landless	4.53	5.33	5.13	7.30
Marginal	4.91	6.71	8.59	10.10
Small	5.09	8.75	9.40	9.34
Medium	7.07	11.84	10.86	13.22
Large	4.76	8.42	6.99	10.65
All Class	4.92	6.72	6.89	8.66

Egg (No.)

Land Class	Baseline	Impact Y-1	Impact Y-2	Impact Y-3
Landless	0.04	0.05	0.06	0.06
Marginal	0.04	0.05	0.06	0.07
Small	0.06	0.06	0.07	0.10
Medium	0.03	0.05	0.05	0.05
Large	0.03	0.04	0.04	0.04
All Class	0.04	0.05	0.06	0.06

Milk

Land Class	Baseline	Impact Y-1	Impact Y-2	Impact Y-3
Landless	3.43	3.18	2.26	2.59
Marginal	7.82	5.68	6.17	11.01
Small	13.29	3.16	4.94	7.87
Medium	8.35	4.31	6.83	8.47
Large	6.32	1.72	1.01	6.92
All Class	5.96	3.75	3.71	5.51

Pulses				
Land Class	Baseline	Impact Y-1	Impact Y-2	Impact Y-3
Landless	13.88	9.22	9.85	11.63
Marginal	15.33	9.29	10.68	13.20
Small	16.47	11.04	13.07	15.57
Medium	16.98	11.53	14.07	16.99
Large	14.38	9.71	13.35	15.67
All Class	14.83	9.69	11.01	13.19

Per Capita non fish Protein Consumption (g) in Kaliakoir (Turag Bangshi Site)

Meat

Land Class	Baseline	Impact Y-1	Impact Y-2	Impact Y-3
Landless	6.68	9.74	13.81	11.88
Marginal	10.47	11.38	16.38	15.26
Small	8.37	12.51	14.50	14.92
Medium	13.30	16.40	19.43	23.18
Large	10.42	10.02	14.65	14.85
All Class	8.65	11.08	15.08	14.27

Egg (No.)

Land Class	Baseline	Impact Y-1	Impact Y-2	Impact Y-3
Landless	0.04	0.04	0.05	0.05
Marginal	0.04	0.05	0.07	0.06
Small	0.04	0.03	0.05	0.06
Medium	0.04	0.05	0.05	0.05
Large	0.03	0.04	0.03	0.07
All Class	0.04	0.04	0.06	0.06

Milk

Land Class	Baseline	Impact Y-1	Impact Y-2	Impact Y-3
Landless	12.71	13.90	17.87	21.77
Marginal	17.35	19.85	24.71	29.58
Small	15.37	34.33	39.83	50.20
Medium	32.19	35.78	44.91	51.11
Large	28.05	34.79	36.87	42.29
All Class	17.07	20.81	25.59	30.76

Per Capita non fish Protein Consumption (g) in Sherpur (Kongshow-Malijhee)

Pulses		
Land Class	Baseline	Impact Y-1
Landless	5.20	4.58
Marginal	6.59	6.05
Small	6.21	4.74
Medium	6.93	6.51
Large	9.77	8.53
All Class	5.99	5.29

Meat

Land Class	Baseline	Impact Y-1
Landless	6.33	5.45
Marginal	9.53	8.63
Small	8.82	10.06
Medium	13.21	14.41
Large	17.22	20.40
All Class	8.42	8.21

Egg (No.)

Land Class	Baseline	Impact Y-1
Landless	0.05	0.07
Marginal	0.05	0.07
Small	0.05	0.07
Medium	0.06	0.09
Large	0.07	0.09
All Class	0.05	0.07

Milk

Land Class	Baseline	Impact Y-1
Landless	10.033	9.07
Marginal	16.33	16.56
Small	12.02	13.59
Medium	23.50	23.63
Large	37.44	37.91
All Class	14.42	13.82

Appendix-7.1

Baseline (Sept'99 - April'00)			
Species	Scientific Name	WEIGHT(K	%
		g)	
Jat Puti	Puntius sophore	1069.43	13.82
Khalisha	Colisa fasciatus	719.39	9.3
Taki	Channa punctatus	583.29	7.54
Коі	Anabas testudineus	516.12	6.67
Gura mach		482.49	6.24
Shing	Heteropneustes fossilis	429.25	5.55
Mola	Amblypharyngodon mola	399.23	5.16
Dry fish		342.73	4.43
Gura Echa	Macrobrachium lamrrei	274.91	3.55
Shol	Channa striata	248.39	3.21
Meni/Bheda	Nandus nandus	241.67	3.12
Okol/Cheng		241.67	3.12
Chuna Khalisha	Colisa laboisa	229.92	2.97
Lal Khalisha	Colisa Ialius	170.33	2.2
Magur	Clarius batrachus	142.32	1.84
Hilsha	Tenualosa ilisha	131.17	1.7
Tengra	Mystus vittatus	118.64	1.53
Rui	Labeo rohita	109.55	1.42
Kanchan Puti	Puntius conchonius	108.85	1.41
Boal	Wallago attu	97.69	1.26

Ranked top 20 fish species consumed at Sreemongol (Hail Haor)

Impact 1 (Sep	Impact 1 (Sept'00 - April'01)			
Species	Scientific Name	WEIGHT(K	%	
		g)		
Jat Puti	Puntius sophore	1194.84	13.93	
Mola	Amblypharyngodon mola	979.22	11.42	
Taki	Channa punctatus	934.83	10.9	
Gura Echa	Macrobrachium lamrrei	541.01	6.31	
Shing	Heteropneustes fossilis	451.76	5.27	
Shol	Channa striata	377.88	4.41	
Dry fish		371.21	4.33	
Khalisha	Colisa fasciatus	357.61	4.17	
Hilsha	Tenualosa ilisha	334.84	3.9	
Gura mach		326.18	3.8	
Meni/Bheda	Nandus nandus	285.98	3.33	
Tengra	Mystus vittatus	242.21	2.82	
Коі	Anabas testudineus	187.70	2.19	
Rui	Labeo rohita	152.60	1.78	
Foli	Notopterus notopoterus	141.28	1.65	
Magur	Clarius batrachus	135.34	1.58	
Kaikla	Xenentodon cancila	132.53	1.55	

Silver Carp	Hypophthalmichthys molitrix	119.38	1.39
Goinna	Labeo gonius	113.45	1.32
Mrigel	Cirrhinus mrigala	111.14	1.3

Impact 2 (Sept'01 - April'02)			
Species	Scientific Name	WEIGHT (Kg)	%
Taki	Channa punctatus	1334.79	14.63
Jat Puti	Puntius sophore	1016.85	11.14
Gura Echa	Macrobrachium lamrrei	557.79	6.11
Shol	Channa striata	525.76	5.76
Mola	Amblypharyngodon mola	502.12	5.5
Hilsha	Tenualosa ilisha	461.81	5.06
Shing	Heteropneustes fossilis	406.91	4.46
Meni/Bheda	Nandus nandus	406.06	4.45
Gura mach		393.53	4.31
Dry fish		325.56	3.57
Khalisha	Colisa fasciatus	323.60	3.55
Pangas	Pangasius pangasius	227.15	2.49
Rui	Labeo rohita	207.52	2.27
Silver Carp	Hypophthalmichthys molitrix	191.71	2.1
Коі	Anabas testudineus	187.19	2.05
Goinna	Labeo gonius	170.49	1.87
Magur	Clarius batrachus	157.33	1.72
Comon Carp/Karfu	Cyprinus carpio	147.33	1.61
Mrigel	Cirrhinus mrigala	146.66	1.61
Chuna Khalisha	Colisa laboisa	133.20	1.46

Impact 3 (Sept'02 - April'03)			
Species	Scientific Name	WEIGHT(K g)	%
Taki	Channa punctatus	1339.58	13.84
Jat Puti	Puntius sophore	1168.25	12.07
Shol	Channa striata	659.89	6.82
Khalisha	Colisa fasciatus	483.72	5
Meni/Bheda	Nandus nandus	481.35	4.97
Mola	Amblypharyngodon mola	479.31	4.95
Gura Echa	Macrobrachium lamrrei	460.43	4.76
Shing	Heteropneustes fossilis	390.66	4.04
Gura mach		334.91	3.46
Коі	Anabas testudineus	324.39	3.35
Dry fish		284.93	2.94
Foli	Notopterus notopoterus	276.03	2.85
Hilsha	Tenualosa ilisha	233.81	2.42

Silver Carp	Hypophthalmichthys molitrix	232.47	2.4
Pangas	Pangasius pangasius	221.63	2.29
Comon Carp/Karfu	Cyprinus carpio	209.92	2.17
Magur	Clarius batrachus	205.62	2.12
Goinna	Labeo gonius	196.99	2.04
Rui	Labeo rohita	194.64	2.01
Tengra	Mystus vittatus	167.65	1.73

Appendix-7.2

Ranked top 20 fish species consumed at Kaliakoir (Turag Bongshi)

Baseline (Oct'99 - April'00)			
Species	Scientific Name	WEIGHT(K g)	%
Gura mach		388.04	18.62
Jat Puti	Puntius sophore	290.59	13.94
Rui	Labeo rohita	214.88	10.31
Gura Echa	Macrobrachium lamrrei	165.43	7.94
Thai Shor Puti	Puntius gonionotus	92.41	4.43
Mrigel	Cirrhinus mrigala	83.44	4
Silver Carp	Hypophthalmichthys molitrix	81.46	3.91
Comon Carp/Karfu	Cyprinus carpio	75.18	3.61
Taki	Channa punctatus	72.68	3.49
Hilsha	Tenualosa ilisha	65.31	3.13
Boro Baim	Mastacembelus armatus	61.54	2.95
Tengra	Mystus vittatus	57.56	2.76
Chapila	Gudusia chapra	41.83	2.01
Catla	Catla catla	38.17	1.83
Pangas	Pangasius pangasius	27.83	1.33
Lamba Chanda	Chanda nama	26.77	1.28
Air	Mystus aor	21.58	1.04
Telapia	Oreochromis (Telapia)	20.64	0.99
	mossambicus		
Chola Puti	Puntius chola	20.59	0.99
Shing	Heteropneustes fossilis	20.02	0.96

Impact 1 (Oct'00 - April'01)			
Species	Scientific Name	WEIGHT(K	%
		g)	
Jat Puti	Puntius sophore	370.78	16.2
Gura mach		292.01	12.76
Rui	Labeo rohita	242.48	10.59
Gura Echa	Macrobrachium lamrrei	210.26	9.19
Mrigel	Cirrhinus mrigala	134.75	5.89
Taki	Channa punctatus	90.54	3.96
Comon Carp/Karfu	Cyprinus carpio	87.91	3.84
Hilsha	Tenualosa ilisha	82.45	3.6
Thai Shor Puti	Puntius gonionotus	82.33	3.6
Pangas	Pangasius pangasius	75.66	3.31
Chapila	Gudusia chapra	74.53	3.26
Silver Carp	Hypophthalmichthys molitrix	63.92	2.79
Catla	Catla catla	61.43	2.68
Tengra	Mystus vittatus	34.76	1.52
Lamba Chanda	Chanda nama	34.03	1.49
Boro Baim	Mastacembelus armatus	33.55	1.47

MANAGEMENT OF AQUATIC ECOSYSTEM THROUGH COMMUNITY HUSBANDRY (MACH)

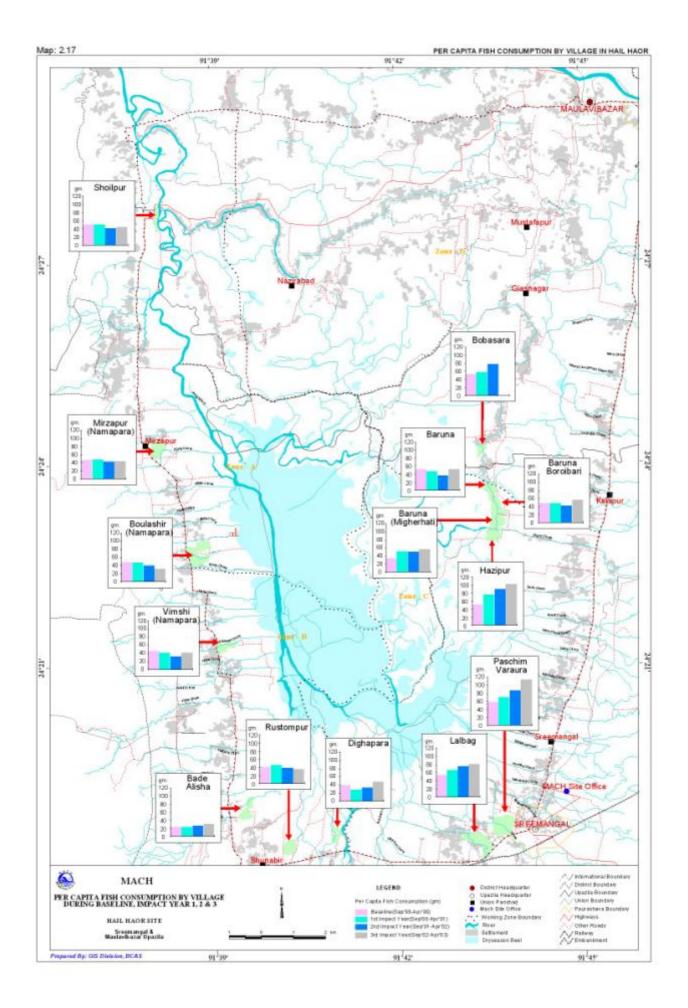
Shol	Channa striata		26.32	1.15
Shar Puti	Puntius sarana		26.32	1.15
Telapia	Oreochromis	(Telapia)	21.04	0.92
	mossambicus			
Lakka	Polynemus indicus		19.80	0.87

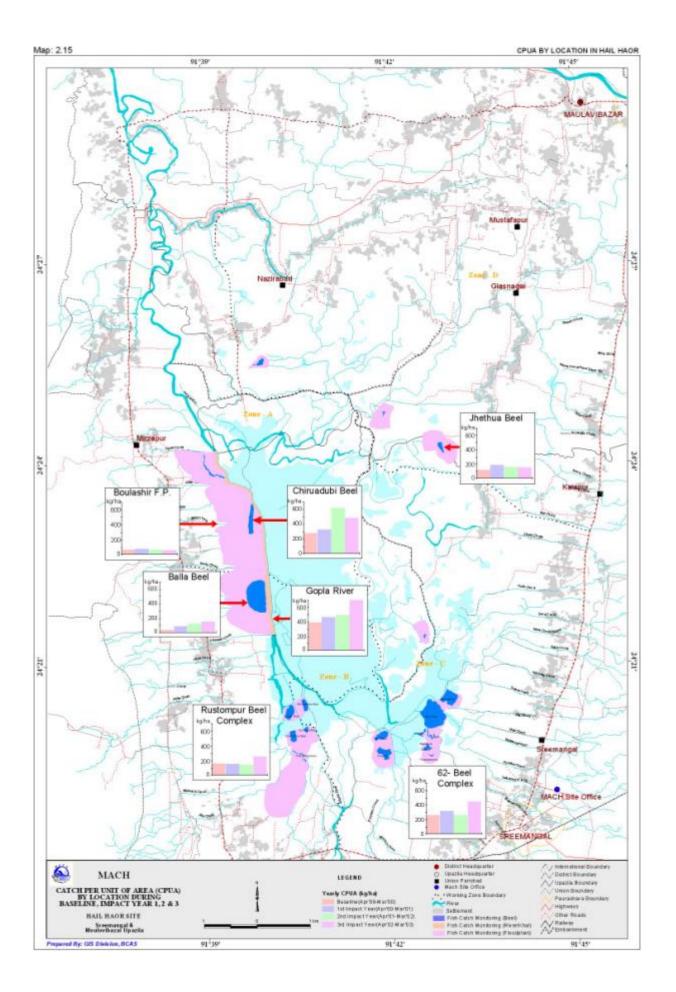
Impact 2 (Oct'01 - April'02)			
Species	Scientific Name	WEIGHT(K	%
		g)	
Gura mach		303.32	12.59
Pangas	Pangasius pangasius	271.91	11.28
Rui	Labeo rohita	263.89	10.95
Jat Puti	Puntius sophore	212.42	8.82
Gura Echa	Macrobrachium lamrrei	206.25	8.56
Mrigel	Cirrhinus mrigala	163.53	6.79
Silver Carp	Hypophthalmichthys molitrix	142.26	5.9
Thai Shor Puti	Puntius gonionotus	124.69	5.17
Comon Carp/Karfu	Cyprinus carpio	111.53	4.63
Hilsha	Tenualosa ilisha	78.05	3.24
Taki	Channa punctatus	74.92	3.11
Catla	Catla catla	73.19	3.04
Chapila	Gudusia chapra	41.31	1.71
Telapia	Oreochromis (Telapia) mossambicus	40.27	1.67
Boro Baim	Mastacembelus armatus	36.75	1.53
Tengra	Mystus vittatus	31.44	1.3
Magur	Clarius batrachus	31.23	1.3
Shol	Channa striata	19.37	0.8
Air	Mystus aor	17.47	0.73
Dry fish		16.76	0.7

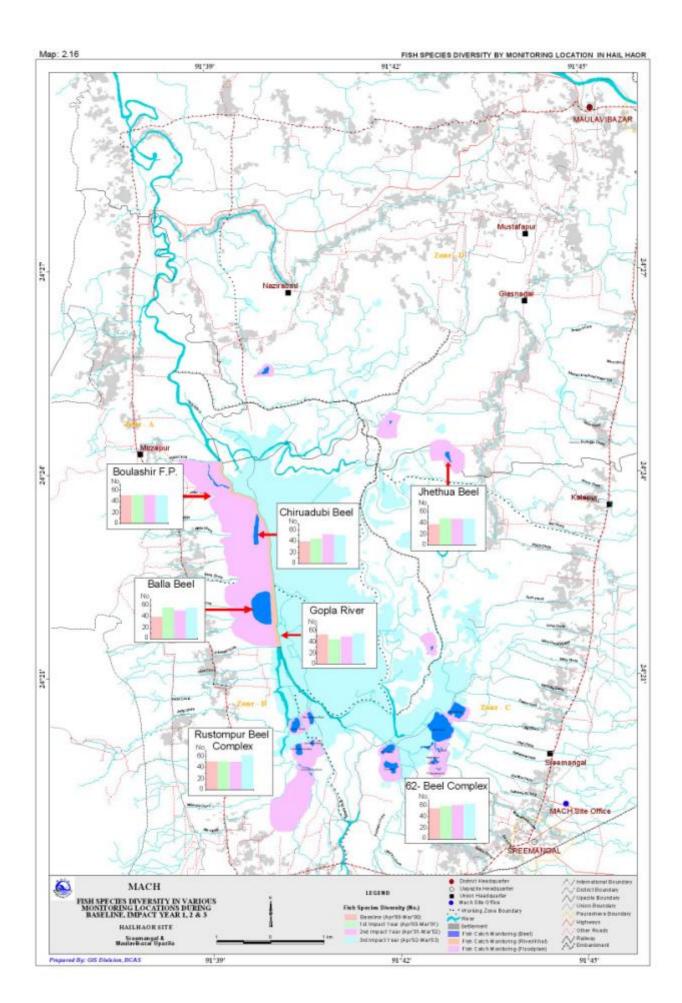
Impact 3 (Oct'02 - April'03)			
Species	Scientific Name	WEIGHT(K g)	%
Rui	Labeo rohita	465.04	16.1
Pangas	Pangasius pangasius	325.19	11.26
Gura mach		302.11	10.46
Mrigel	Cirrhinus mrigala	257.62	8.92
Jat Puti	Puntius sophore	242.82	8.4
Silver Carp	Hypophthalmichthys molitrix	226.52	7.84
Gura Echa	Macrobrachium lamrrei	135.75	4.7

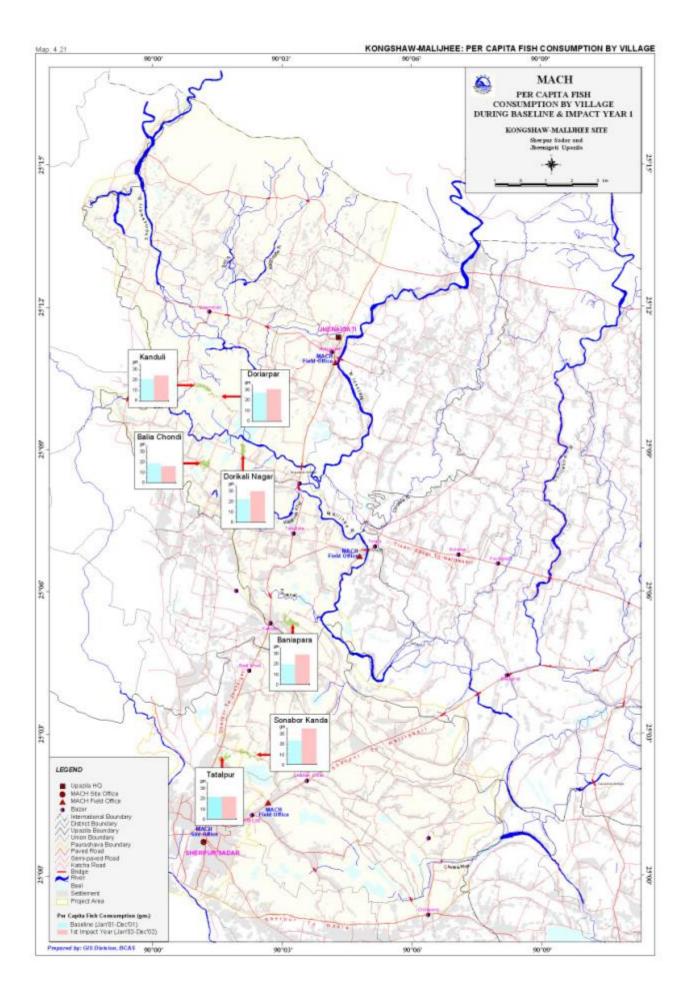
Comon Carp/Karfu	Cyprinus carpio	130.57	4.52
Thai Shor Puti	Puntius gonionotus	128.74	4.46
Taki	Channa punctatus	93.10	3.22
Chapila	Gudusia chapra	69.75	2.41
Telapia	Oreochromis (Telapia) mossambicus	68.74	2.38
Catla	Catla catla	44.79	1.55
Shol	Channa striata	39.22	1.36
Air	Mystus aor	30.79	1.07
Tengra	Mystus vittatus	28.38	0.98
Boro Baim	Mastacembelus armatus	27.82	0.96
Dry fish		27.82	0.96
Hilsha	Tenualosa ilisha	27.63	0.96
Bighead Carp	Aristechthys nobilis	17.75	0.61

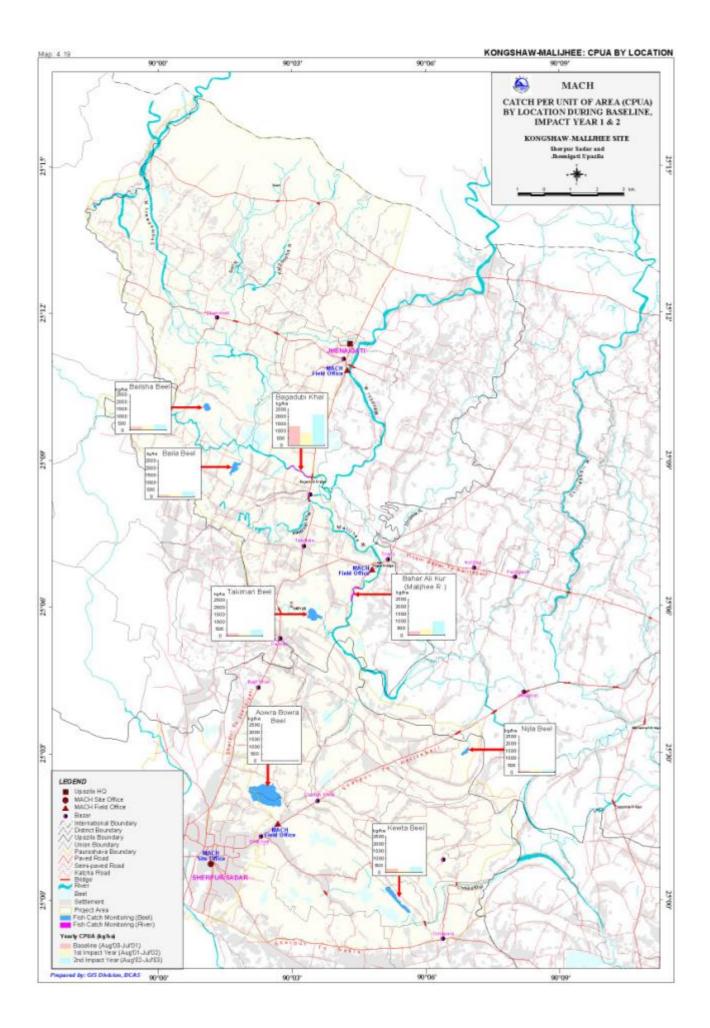
Appendix-7.3

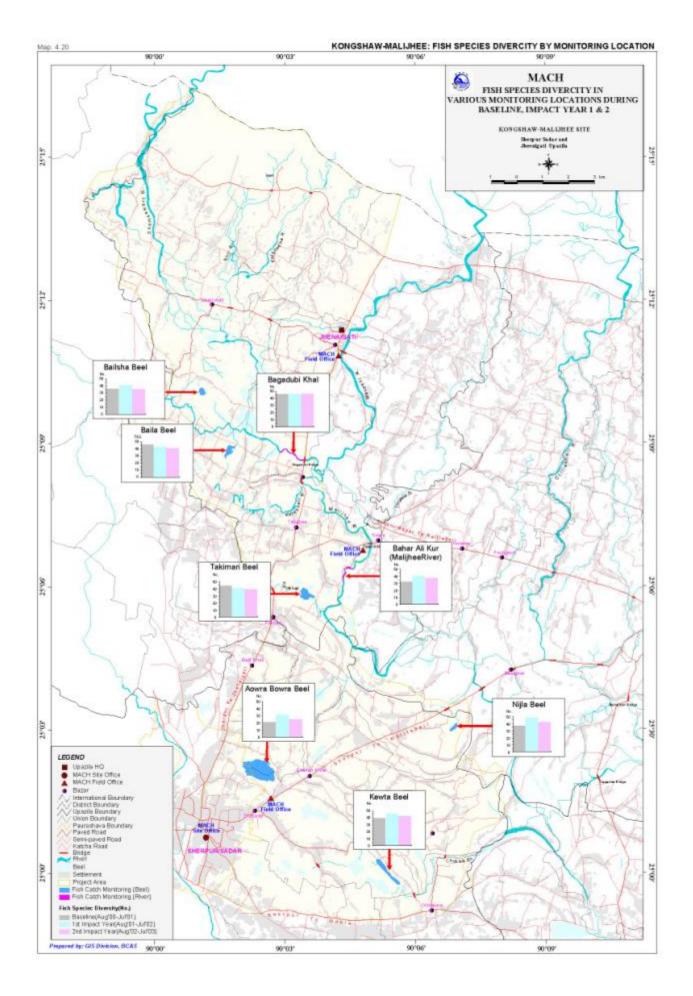

Baseline(Jan'01 - Dec'01)			
Species	Scientific Name	WEIGHT	%
		(kg)	
Gura mach		532.02	23.49
Jat Puti	Puntius sophore	296.88	13.11
Taki	Channa punctatus	248.30	10.96
Gura Echa	Macrobrachium lamrrei	207.89	9.18
Dry fish		139.10	6.14
Hilsha	Tenualosa ilisha	129.68	5.72
Silver Carp	Hypophthalmichthys molitrix	124.58	5.5
Mrigel	Cirrhinus mrigala	60.58	2.67
Rui	Labeo rohita	53.85	2.38
Tengra	Mystus vittatus	45.37	2
Tara Baim	Macrognathus aculeatus	44.24	1.95
Gutum	Lepiodocephalus guntea	34.05	1.5
Dankina	Rasbora daniconius	33.24	1.47
Pangas	Pangasius pangasius	32.36	1.43
Boal	Wallago attu	24.72	1.09
Comon Carp/Karfu	Cyprinus carpio	24.39	1.08
Koi	Anabas testudineus	23.60	1.04
Thai Shor Puti	Puntius gonionotus	19.52	0.86
Shar Puti	Puntius sarana	19.52	0.86
Catla	Catla catla	18.67	0.82

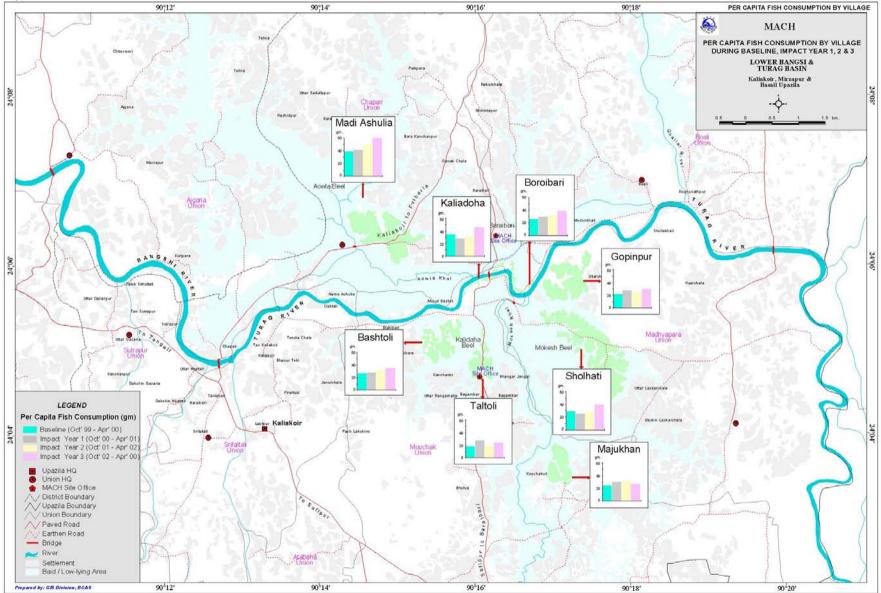

Ranked top 20 fish species consumed at Sherpur (Kongshow Malijhee)

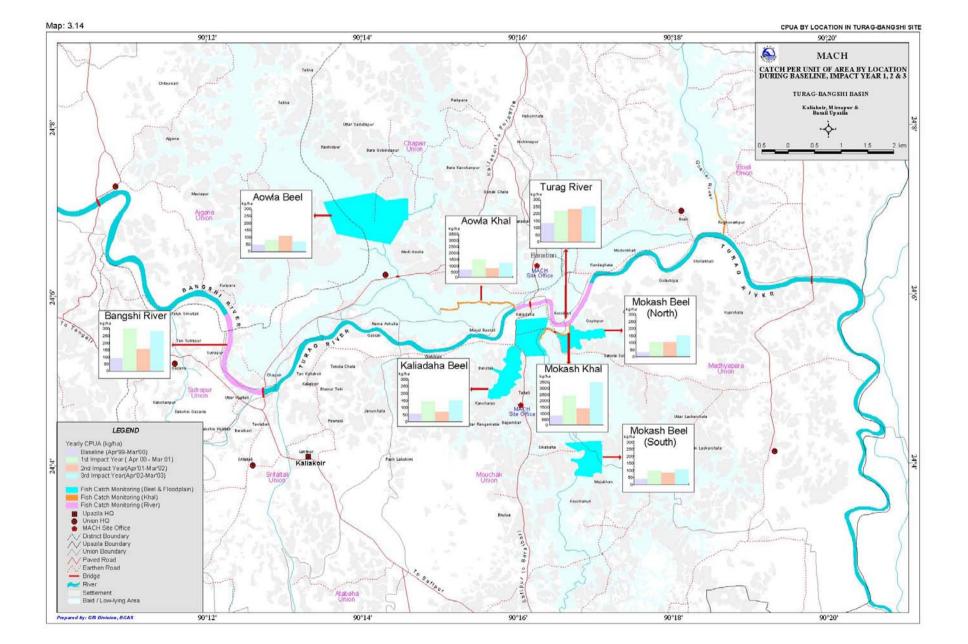

Impact 1(Jan'02 - Dec'02)			
Species	Scientific Name	WEIGHT(Kg	%
)	
Gura mach		557.09	19.14
Jat Puti	Puntius sophore	517.35	17.77
Taki	Channa punctatus	288.26	9.9
Gura Echa	Macrobrachium lamrrei	240.39	8.26
Silver Carp	Hypophthalmichthys molitrix	218.10	7.49
Mrigel	Cirrhinus mrigala	156.16	5.37
Dry fish		113.64	3.9
Comon Carp/Karfu	Cyprinus carpio	79.60	2.73
Hilsha	Tenualosa ilisha	78.62	2.7
Tengra	Mystus vittatus	59.47	2.04
Rui	Labeo rohita	59.34	2.04
Shar Puti	Puntius sarana	48.33	1.66
Dankina	Rasbora daniconius	42.24	1.45
Gutum	Lepiodocephalus guntea	41.33	1.42
Thai Shor Puti	Puntius gonionotus	40.27	1.38
Tara Baim	Macrognathus aculeatus	40.13	1.38
Chuna Khalisha	Colisa laboisa	33.38	1.15
Koi	Anabas testudineus	31.62	1.09
Boal	Wallago attu	28.92	0.99

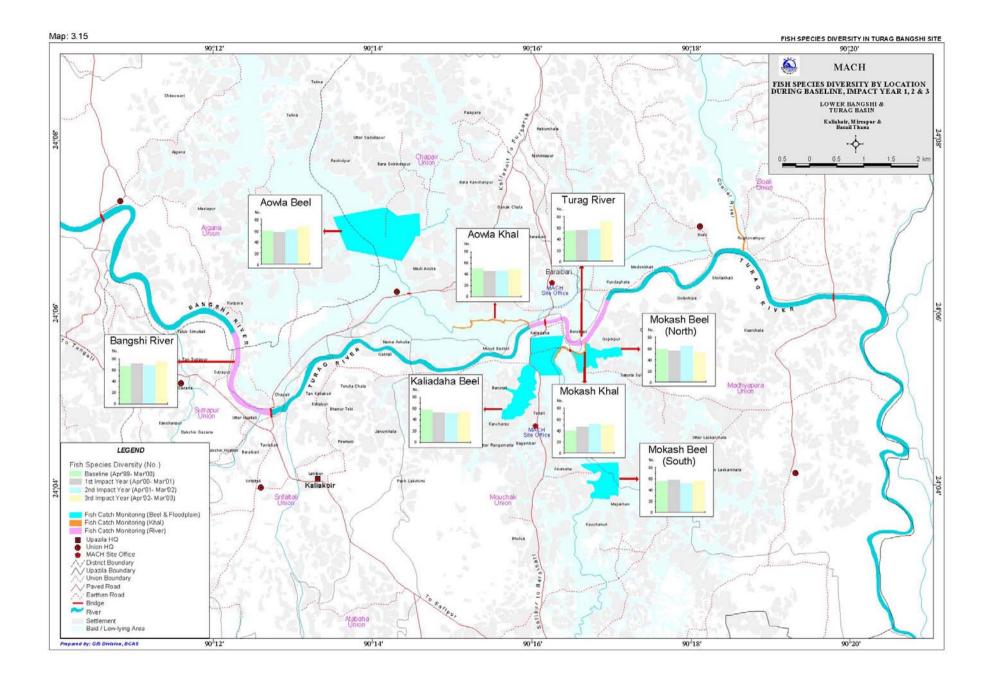

Catla	Catla catla	28.62	0.98


Maps









Map: 3.16

A project of the Government of Bangladesh

Supported by USAID

Project Partners:

Winrock International Bangladesh Centre for Advanced Studies (BCAS) Center for Natural Resource Studies (CNRS) CARITAS Bangladesh

MACH Headquarters: House No: 2, Road 23A Gulshan 1, Dhaka 1212 <u>Bangladesh</u>