

MACH **Technical Paper 5**

Changes in Biodiversity with Wetland Restoration and Fish Reintroduction

Management of Aquatic Ecosystems through Community Husbandry

July 2007

A project of the Government of Bangladesh Supported by USAID **Project Partners:** Winrock International **Bangladesh Centre for Advanced Studies (BCAS)** Center for Natural Resource Studies (CNRS) **CARITAS Bangladesh**

Changes in Biodiversity with Wetland Restoration and Fish Reintroduction

MACH

Technical Paper 5

Paul Thompson, Ashoke K. Das, Darrell L. Deppert, S.N. Chouhdury

July 2007

Dhaka

Winrock International Bangladesh Center for Advance Studies Center for Natural Resource Studies CARITAS Bangladesh

Table of Contents

Page
Abstract
Acknowledgements
1. Introduction
1.1 Declining wetland biodiversity
2 Biodiversity and Local Identification of Wetland Problems
3 Interventions
2.1 Pa avagyation of bools and connecting couple
3.2 Establishment of fish sanctuaries
3.3 Restoration of swamp and riparian vegetation
4. Re-stocking Program
4.1 Identification of species to be stocked
4.2 Collection of fish
4.4 Mortality of fries during transportation
4.5 Fish release
4.6 Stocking of fish
5. Impacts on Fish Diversity
5.1 Methods
5.3 Changes in fish diversity
5.4 Trends in main fish species caught
5.5 Other whathe
o. Conclusion
References
Annex
Annex 1: Fish Species Diversity – lists of species by year and site.
Tables
Table 1 Priority problems identified by stakeholders in participatory planning 5
Table 2 Fish species identified as rare in the project sites and suitable for restoration with national threat status 7
Table 3 Fish re-introduction 2001-2005
Table 4 Monitoring locations, habitats and areas 10
Table 5 Re-introduced fich species - numbers of fish introduced and estimated numbers of fish caught
12010 5 Re-infroduced fish species - numbers of fish infroduced and estimated numbers of fish caught
Table 6 Number of fish species recorded in sample catches in monitoring areas
Table 7 Biodiversity indices for fish catch (Shannon indices) 16
Table 8 Fish species contributing 1% or more of catch, with % of catch by year and trend - Hail Haor (Sreemongal) 17

Table 9 Fish species contributing 1% or more of catch, with % of catch by year and trend - Turag Bangshi (Kaliakoir)	. 18
Table 10 Fish species contributing 1% or more of catch, with % of catch by year and trend – Kongsha-Malijhee (Sherpur)	. 19
Figures	
Fig. 1 Catch composition by types of fish	. 15
Fig 2. Baikka Beel mid-winter waterbird census	. 19

Abstract

The MACH project worked to restore productivity of three major wetlands in Bangladesh between 1998 and 2007. The single largest contribution to local livelihoods from these wetlands is from wild fish catches, but communities identified declinging fish and other aquatic resources and wildlife as serious problems in these areas. The major interventions taken by local communities with project support have been habitat restoration (excavation of deeper spots to retain water and tree planning) and making fish sanctuaries. However, some species need a helping hand to re-establish having been lost or become very scarce in a wetland. MACH re-stocked 15 species of fish into the wetlands, 10 of which are considered to be nationally threatened. Regular catch monitoring gives an indication of whether these species have established self-sustaining populations and are now caught in greater numbers, and also any overall changes in fish diversity.

Piloting through MACH has shown that sustaining populations of some native carps can be reestablished – populations of Goinna have been restored in all three sites, and Rui and Kalibaus appear to have increased where there are suitable conditions or connections for breeding. Habitat restoration and protection plus re-introduction appear to have been very successful in re-establishing Meni and Shol in the Kangsha-Malijhee floodplains of Sherpur. However, attempts to re-establish Deshi Sarputi appear not to have succeeded, and more time will be needed to determine the impact for other species. Overall species diversity increased in Hail Haor and Kangsha-Malijhee. However, although Turag-Bangshi had the lowest baseline fish catches they were more diverse and there has been no notable change in species diversity. In Hail Haor most of the gains have been from higher catches of small catfish and snakeheads which benefit from sanctuaries and excavation. In Turag-Bangshi miscellaneous small fishes, small catfish, snakeheads, large catfish and prawns have all recovered. In Kangsha-Malijhee most groups of fish have just increased in proportion to the increased catches. In addition catches of Common Carp in all three sites increased indicating that this introduced species is becoming established despite no assistance through the project.

Restoration of wetland habitats and their protection from exploitation have been demonstrated to be the key measures to restore other wetland biodiversity, for example water bird populations and diversity increased greatly in Hail Haor with protection and restoration of a large sanctuary. Restoration of populations of some locally rare fishes through re-introduction has been successfully demonstrated, but this requires careful assessment to see that suitable habitat is protected, collection of fish from wild sources where this will not affect the parent stock, and care and expertise in transporting and handling fry of native species during their release.

Acknowledgements

The authors express their deep gratitude to the Resource Management Organizations of MACH Project and fisher folk surrounding the wetlands for providing anecdotal information regarding regeneration of fish species in their catches. The Site Coordinators and especially the Field Biologists collected information from the field. Special thanks are also due to the Senior/ Upazila Fisheries Officers of MACH Project areas for providing their views regarding changes in fish biodiversity due to some habitat restoration interventions.

Thanks are also due to Mr. Rony Rozario, MIS officer, MACH-CNRS and Khandker Hasib Mahbub for compiling and analyzing catch monitoring data and other relevant statistics. Special thanks and gratitude are due to Mr. Mokhlesur Rahman, Executive Director, CNRS for suggestions for improvement of the paper. The authors also acknowledge with thanks the information of physical interventions provided by Mr. M.A. Rouf, Executive Engineer of Investment Support to MACH. The authors express their gratidute to the Depatment of Fisheries for providing the opportunity to use its library for references.

1. Introduction

1.1 Declining wetland biodiversity

Out of Bangladesh's 260 freshwater fish species (Rahman 2005), more than 40% are now threatened with national extinction (IUCN Bangladesh 2000) and may soon follow the path of other wetland fauna and flora. Since 1985, natural carp spawn catches have declined by 75% (Ali 1997) and major carp and large catfish have declined by 50% in national catches. There have already been mass extinctions in the last 200 years in much of Bangladesh. In the mid-nineteenth century there were large areas of reed swamp, wet grassland and flooded forests, particularly in the haors of Greater Sylhet, where One-horned Rhinoceros, Tiger, Swamp Deer and Wild Buffalo all roamed (Sachse 1917). By 1967 large mammals had long since disappeared from the haors, but in Hail Haor "From horizon to horizon the sky was full of wheeling ducks and their clamorous voices could be clearly heard for half a mile" (Mountfort 1969). Yet monthly surveys of Hail Haor in 1992 revealed few ducks (FAP 6 1993); and in 2003 only a handful of wild ducks remained.

The wetlands that cover half of Bangladesh are a source of food and income for perhaps 70 million rural households. However, flood embankments and water control structures have blocked fish migration routes; irrigation has expanded winter rice cultivation and reduced the water available for aquatic life to survive in the six-month dry season; industrial development causes locally severe pollution; overexploitation has reduced wild fauna and flora; and loss of tree cover and poor slope cultivation practices in watersheds cause high rates of siltation in wetlands. The most critical problem is the loss of dry season surface water which is vital for all aquatic life including fish.

1.2 MACH

The Management of Aquatic Ecosystem through Community Husbandry (MACH) project (phases I and II) is a USAID supported project implemented in three large wetlands in conjunction with the Bangladesh Government and four NGOs. The project has been working since 1999 to enable and introduce sustainable wetland management and restore and protect wetland biodiversity. It follows a co-management approach based on community level participation and development which links socio economic benefits for fisher and other wetland dependent people in the project areas with wetland conservation.

Hail Haor in north-east Bangladesh is typical of deeply flooded basins in that region known as *haors*. Water from the hills to the east and west flows through 59 streams into the haor. Flood control works downstream limit its connection with the main river system The haor is located in five unions of Sreemongal Upazila and in two unions of Sadar Upazila of Moulvi Bazaar District. The watershed of Hail Haor covers about 600 km² (237 square miles) and 15% is in India. The average maximum wet season area of Hail Haor is about 13,000 ha, but the dry season area is typically just over 3,000 ha. Approximately 172,000 people live in 61 villages around the haor.

The **Turag-Bangshi** site is just north of Dhaka and is typical of low-lying floodplains in Bangladesh. It covers seven unions of Kaliakor Upazila in Gazipur District and one union of Mirzapur Upazila in Tangail District. The Turag-Bangshi River runs for approximately 30 km through the site with 26 beels (wetland depressions) and numerous canals on either side of the river. Water covers about 10,000 ha at full flood, but diminishes to less than 700 ha at the end of the dry season. Dry season water has been reduced for agriculture and irrigation. Approximately 225,000 people live in 226 villages that make use of the river and floodplains.

The **Kangsha-Malijhee** site is in north-central Bangladesh in Sherpur Sadar and Jhenaigathi Upazilas in Sherpur District. The area includes the catchments of the upper Kangsha and Malijhee river system. The hills here now have only remnants of natural forest. The area is prone to regular flash floods from these hills. The wetlands and floodplain have a water area of approximately 8,000 ha during the wet season, which falls to about 900 ha in the dry season. The floodplain area contains 47 beels, of which 18 are perennial. The population of the area is approximately 279,000 living in 163 villages.

1.3 Focus of this paper

This paper summarises evidence of changes in fish biodiversity and experiences in restoring locally scare fishes in the three MACH sites (Hail Haor (HH) in the north-east, Turag Bangshi (TB) just north of Dhaka, and Kangsha Malijhee (KM) in the north-central area based on catch monitoring data and key informants and their experience during the period from 1999 to mid-2005.

This paper should be read in conjunction with MACH Technical Report 4 to understand the links between fishery production and environment/water levels, and MACH Technical Report 3 on fish sanctuaries.

2. Biodiversity and Local Identification of Wetland Problems

In the baseline year of MACH without interventions (1999 in Hail Haor and Turag-Bangshi, and 2000 in Kangsha-Malijhee) the wetland habitats and fish biodiversity were degraded in all three sites. The wetland dependent people of the areas reported that fish catches and species diversity, along with other aquatic resources, had been declining, and people were not aware of any actions implemented either by Government or any other organizations to protect these wetlands.

To understand the issues and target appropriate measures to address local problems and restore aquatic biodiversity, identification of the critical problems was essential. Problems were identified by the local communities dependent on these wetlands through participatory planning processes. In Hail Haor and Turag-Bangshi, village level discussions were held that included problem censuses and rankings of priority problems. In Kangsha-Malijhee the Participatory Action Plan Development (PAPD) approach was used where workshops and discussion groups with separate stakeholder categories were held among people from several villages using each wetland (Table 1).

Problem	Hail Haor overall top	Kaliakoir	Sherpur average	Addressed
	problems	(average score) *	score **	by MACH
Siltation	YES	9.2	4.5	YES
General decline in fish	YES	5.0	7.2	YES
Loss/catching of fish spawn		3.9	4.5	YES
and brood fish				
Pollution	YES	3.9		YES
Use of destructive gear		3.5	5.1	YES
Decline in aquatic resources	YES	2.1	3.1	YES
plants/ animals				
Low water in dry season/	YES	1.4	0.8	YES
irrigation problem				
Some fish species lost		1.5	3.3	YES
Lack of employment		2.5	2.2	YES
Fish disease		2.4	3.7	NO
Loss of water birds	YES		1.3	YES
Flood damage			3.5	NO
Rice seed (HYV) quality		2.5		NO
Leasing system	YES			YES

 Table 1 Priority problems identified by stakeholders in participatory planning

* Average of village based scores where: 1st priority problem = 10, 2nd = 9, etc.

** Average of stakeholder based scores where: 1st priority problem = 10, 2nd = 9, etc.

Bold = top seven problems by site, bold problem name = top problems common to all three sites

Only the problems that were in the top seven in each site are shown

Thus the main problems identified can be summarized as declining fisheries and aquatic resources/ biodiversity as a result of siltation, degradation and loss of habitat, and over-exploitation including the use of fishing gears and practices (such as dewatering) that are considered to be destructive. Moreover, biological and environmental specialists in the project assessed that catches were less than the potential for wetlands such as these. This was supported by baseline surveys (which then continued as monitoring throughout the project period), and information and opinions of related District and Upazila Fisheries Officers and the fisher communities.

3. Interventions

After identification of these problems, MACH helped the communities to organize and form wetland based Resource Management Organizations (RMO), and then helped them to take initiatives to restore and protect wetland habitat, and this was expected to restore fish diversity and populations. The main initiatives taken were:

- Re-excavation of beels and canals to keeping water in dry season.
- Establishment of fish sanctuaries complete with fish shelters of brushpiling or concrete pipes, tetrapods and hexapods.
- Collection of indigenous fish species from other places and reintroduction/re-stocking in the wetlands.
- Bans on fishing in the breeding season.
- Bans on hunting birds.

Because much of these wetlands dry up for half of the year, the focus has been on improving conservation of fish in the dry season so that they can spawn and repopulate the floodplains in the next wet season. The physical interventions that have had most impact on fish habitat are briefly discussed below, while the main focus of this technical paper is on restocking and its impacts.

3.1 Re-excavation of beels and connecting canals

To restore wetland habitat in the project water bodies, silted up beels and canals that had become seasonal were excavated so that they for retain more water throughout the dry season to support overwintering adult fishes. These brood fishes play a key role in repopulating the wetland system in the following year. In addition to beel resident fish species, the first flood water in the early monsoon contains huge quantities of eggs of many fish species including those that are migratory and breed in the river system. The connecting canals (khals) play an important role alowing fish eggs, brood fish and fish hatchlings and fries to move from rivers to beels and floodplains, and vice versa. This of course is essential for completion of their biological cycle (spawning, nursing, feeding and taking refuge). By 2007 MACH had excavated 57 ha of beels and over 31 km of khals.

3.2 Establishment of fish sanctuaries

A fish sanctuary is a place where fish and other aquatic life are free from exploitation around the year. Fish sanctuaries have a critical role to protect brood fish in the dry season. Sanctuaries have been established by the RMOs with the help of the local wetland dependent communities, local Union Parisad (council), and local government officials. By 2007 a total of 57 sanctuaries had been established in the three MACH sites, covering 439 acres (178 ha), of these 11 (268 acres) were in Hail Haor, 23 (135 acres) in Turag-Bangshi, and 23 (36 acres) in Kangsha Malijhee. With the exception of one large wetland sanctuary (234 acres or about 100 ha) of national significance in Hail Haor, the others are of modest size. The largest of these sanctuaries - Baikka Beel - covers approximately 100 ha of permanent wetland in Hail Haor and has already been effective in providing breeding grounds for a number of beel resident fish species, larger fish are being caught in the neighboring areas, and migrant waterbirds, particularly ducks, have returned to the area in good numbers because they have a safe refuge and the RMO has successfully prevented hunting and other disturbance. With that exception a significant part of the no fishing area comprises improved fish habitats either through excavation or placing fish protection and shelter materials (in beels mostly concrete pipes and hexapods which the fish use as shelters and which provide surfaces for growing algae that the fishes feed on), and in the rivers brushpiles with bamboo and tree branches (which again act as a protector as well as food source for the fish). The RMOs protect the sanctuaries and prevent fishing year-round, and the areas are well demarcated and signed.

3.3 Restoration of swamp and riparian vegetation

Suitable wetlands have been planted with wet area tree species (Hijal *Barringtonia acutangula* and Koroch *Pongamia pinnata*) in each of the three sites. When fully established these wetland forests

will enhance the quality of habitats by providing additional niches for a range of wildlife to feed and when flooded as a refuge area for fish and other aquatic life. The communities (RMOs) also have rights to earn an income from these trees through selling of branches for making of brush piles and for use as fuel wood when they are sufficiently mature, but the agreements are not to fell these trees.

In order to protect stream banks and reduce soil erosion, selected stream banks within and adjacent to the project sites have been planted with trees (timber, fruit, and others) and shrubs to develop riparian forest along the river course. In addition to the ecological importance of riparian forest for birds and wildlife, as corridors connecting upland areas with the wetlands, and for stabilizing the banks of the streams and rivers, the local communities are also expected to earn income in the long term from felling (and replanting) the trees.

4. Re-stocking Program

Fingerlings and adult fish of 15 indigenous species were released in all three sites with the aim of restoring self supporting populations of indigenous fish species. The stages in this fish stocking program are discussed below. Appart from a small number of adult fish in the first year, most of the fish released were fry and fingerlings.

4.1 Identification of species to be stocked

Using baseline data, participatory planning, and opinions of local fishers, RMOs and Upazila Fisheries Officers, as well as the project team's assessment of biological needs and habitat conditions of the sites after MACH interventions, some fish species were identified (usually ones listed as nationally threatened with extinction, IUCN Bangladesh 2000) for stocking in each site, with the aim of restoring fish diversity (Table 2).

No.	Common name	Scientific name	National threat status
1	Shol	Channa striatus	
2	Gajar	Channa marulius	EN
3	Ghonia	Labeo gonius	EN
4	Kalibaus	Labeo calbasu	EN
5	Rui	Labeo rohita	
6	Bata	Labeo bata	EN
7	Deshi Sarputi	Barbodes sarana	CR
8	Pabda	Ompok pabda	EN
9	Shing	Heteropneustes fossilis	
10	Ayre	Sperata aor	VU
11	Gulsa	Mystus cavasius	
12	Chital	Chitala chitala	EN
13	Foli	Notopterus notopterus	VU
14	Chapila	Gudusia chapra	
15	Meni	Nandus nandus	VU

 Table 2 Fish species identified as rare in the project sites and suitable for restoration with national threat status

Scientific names and order follow Rahman (2005); threat status is from IUCN (2001): CR = critically endangered; EN = endangered; VU = vulnerable.

4.2 Collection of fish

The fish used in re-introduction and enhancement were collected from several sources. Some came from the Bangladesh Fisheries Research Institute, Mymensing and others came from natural stocks in several rivers and beels in Pakundia and Gouripur Upazilas in Kishoregonj District, Adamdighi Upazila in Bogra District and Jessore Sadar Upazila in Jessore District. The carp fries (*Labeo* sp.) were hatchery raised fish collected from several nurserers in different parts of the country including Dhamrai Upazila in Dhaka District, Tangail Sadar Upazila in Tangail District, Sreemangal Upazila in Moulvibazar District, Gouripur and Pakundia Upazilas in Kishoregong District, and Sherpur Sadar Upazila in Sherpur District.

4.3 Transportation of fries

The fries were transported by trucks and microbus. The carp fries came from the supplier in bulk using steel drums and trucks. The other indigenous fishes (Pabda, Foli, Deshi Sarputi, Mani, Chapila, Gulsa, Gajor, Shol, Ayre, Chital and Shing) were transported in oxygenated poly bags (size 20" x 30") and aluminium pots (deksi). About 250-500 fry (the number depended on their size which was in the range 2.5 - 8.0 cm) could be carried in one poly bag. In the case of aluminium pots of medium size about 500 to 1,000 fry could be carried in one pot.

4.4 Mortality of fries during transportation

The rate of mortality depended on distance. When the fries were transported for 50 to100 km by truck the rate of mortality was within 5-7% for carps transported in steel drums. For longer distances the rate of mortality increased. In case of non-carp indigenous fishes the mortality rate was within 1-3% when poly bags were use. Overall oxygenated poly bags are more effective than aluminium pots for transportation of small fries. Note that this experience is based on experienced staff/workers handing the fries.

4.5 Fish release

The places for fish release were selected by the RMOs in consultation with the related Upazila Fisheries Officer, and MACH staff. After selection of the places, a stocking plan was made. Country boats, hapa, measuring scale, balance, and nets are required for fry release. It is better if fries are released either in the morning or afternoon. High temperatures (middle of the day), rainy days, and cloudy days should be avoided when releasing fries.

4.6 Stocking of fish

A total of about 1.2 million fish (almost all fry and fingerlings) of 15 species were released in the three wetlands between 2001 and 2005 (Table 3). At the time of fish release local government officials, chairmen and members of local Union Parisad, RMO members, local leaders, teachers, students and other opinion leaders attended to support and endorse the activity.

5. Impacts on Fish Diversity

5.1 Methods

Fish catches were monitored primarily with the aim of estimating changes in productivity (catch per unit area) in the wetlands as a whole, but were also monitored to assess diversity of fish catch. The baseline data collection year in Hail Haor was from April 1999 through March 2000, in Turag-Bangshi it was May 1999 through April 2000, and in Kangsha-Malijhee (Sherpur) site it was August 2000 to July 2001. Thereafter impact monitoring continued in all three sites up to 2006. The wetlands are far too large to attempt a complete enumeration of all fish catches, so monitoring was on a sample basis.

Species	2001	2002	2003	2004	2005	Total			
Turag-Bangshi									
Kalibaush (Labeo calbasu)	10	144		13,622	4,717	18,493			
Rui (Labeo rohita)		26,434	109,510			135,944			
Gonia (Labeo gonius)		5,051	24,332		19,754	49,137			
Deshi Sarputi (Puntius sarana)	80				2,000	2,080			
Meni (Nandus nandus)	14					14			
Foli (Notopterus notopoterus)	20					20			
Chital (Notopterus chitala)					2,000	2,000			
Shing (Heteropneustes fossilis)					2,000	2,000			
Pabda (Ompok pabda)	12				4,000	4,012			
Carps sub-total	10	31,629	133,842	13,622	24,471	203,574			
Total	136	31,629	133,842	13,622	34,471	213,700			
Kangsha-Malijee									
Kalibaush (Labeo calbasu)	16,940	175		5,298		22,413			
Rui (Labeo rohita)		320	27,939	20,344		48,603			
Gonia (Labeo gonius)	12,780	11,028	7,439	69,119	12,200	112,566			
Bata (Labeo bata)			6,534			6,534			
Deshi Sarpunti (Puntius sarana)		2,090			1,000	3,090			
Meni (Nandus nandus)		372				372			
Shol (Channa striata)	11,180		70			11,250			
Gojar (Channa marulius)	1,390					1,390			
Chapila (Gudusia chapra)			150			150			
Chital (Notopterus chitala)					2,000	2,000			
Shing (Heteropneustes fossilis)					4,000	4,000			
Pabda (Ompok pabda)		137			2,000	2,137			
Gulsha (Mystus cavasius)		30				30			
Carps sub-total	29,720	11,523	41,912	94,761	12,200	190,116			
Total	42,290	14,152	42,132	94,761	21,200	214,535			
Hail Haor									
Kalibaush (Labeo calbasu)	2,108	15,213		5,632	12,697	35,650			
Rui (Labeo rohita)			117,253	52,468		169,721			
Gonia (Labeo gonius)	13,200	14,350	59,092	305,793	154,455	546,890			
Deshi Sarpunti (Puntius sarana)	4,136	3,600			3,000	10,736			
Chital (Notopterus chitala)					6,004	6,004			
Ayer (Mystus aor)	384	2,934	500			3,818			
Gulsha (Mystus cavasius)					650	650			
Carps sub-total	15,308	29,563	176,345	363,893	167,152	752,261			
Total	19,828	36,097	176,845	363,893	176,806	773,469			

Table 3 Fish re-introduction 2001-2005

Biological productivity is a function of the ecological condition of the habitat, which is governed by the landscape, and hydrological regime of the area. The spatial and temporal variation in the project area is high, as it is over most of the floodplains of Bangladesh. Fishing method and gear techniques vary considerably by different habitat locations. In order to portray a fish catch that represents the project area, the habitats were stratified into rivers, canals, beels, and floodplains. The selection criteria also included the geographical distribution over the project site, water flow, inundation regime and biological zones of the area. Baseline conditions are used to measure parameter changes after appropriate interventions and implementation of fisheries management. The aim was to capture changes that were expected to be both local (in a specific habitat) and global (throughout the project site). Accordingly a number of locations and habitats were selected and have been monitored in the same way ever since.

The same monitoring sites (Table 4) were covered throught the study. The sites monitored were not selected to focus on locations where impacts from management improvements introduced through MACH (including fish releases) might be concentrated, but to represent the whole of the wetland system. For example, in Hail Haor some of the areas monitored were in areas that continued to be controlled by traditional leaseholders and are not directly managed by RMOs, but would be expected to be impacted to the extent that the whole haor is benefited by changes in management in a substantial part of it.

Monitoring	Monitoring	Habitat
locations	area (ha)	
	Hail Haor Site	
Jethua Beel	67.95	Beel, canal,
		floodplain
Gopla River	41.23	River
Boulashir floodplain	234.38	Floodplain
Cheruadubi Beel	30.40	Beel
62-Beel Complex	419.48.	Beel, floodplain
Rustompur Beel	221.73	Beel, canal,
Complex		floodplain
Balla Beel	159.09	Beel, floodplain
Total	1174.26	
Ти	rag Bangshi Sit	е
Mokash Beel South	100	Beel
Mokash Beel North	100	Floodplain
Kalidaha Beel	50	Beel
Mokash Khal	0.70	Canal
Turag River	14	River
Aowla Khal	1.02	Canal
Aowla Beel	100	Beel
Bangshi River	17	River
Total	382.72	
Kan	gsha-Malijhee s	site
Baila Beel	44.10	Beel, floodplain
Takimari Beel	34.75	Beel, floodplain
Kewta Beel	33.07	Beel
Nijla Beel	63.92	Beel, floodplain
Bagadubi Khal	4.20	Khal
Malijhi River	5.00	River
(Baharalia kur)		
Aowra Bowra Beel*	69.33	Beel
Bailasha Beel	13.35	Beel, floodplain
Total	267.72	

Table	4 M	onito	rino	locations	habitats	and	areas
I abic	- TAT	onno	i mg	iocations	, navitats	anu	arcas

* Not under an RMO, treated as a control and excluded from main analysis

Floodplain fisheries, with their spatial and temporal variations in fish and water abundance, are as complex and dynamic as the fishing practices. The type of fishing gear used affects a fisher's catch within a specific habitat. A sample unit was considered to be one set of gear used for a catch attempt. To offset any bias from the spatial distribution of fishing gear used, the field biologist collected data from different locations at the monitoring locations. For each gear type at least three fishing units were monitored on a survey day. If there were more than 30 fishing units of one particular gear type operating in a day, data was collected from not less than 10 percent of the operating fishing units. Irrespective of catch data from individual fishing, gear use by all types of fishing units in operation were counted during the catch monitoring day. This is the effort for that day. At the end of the day a list of fishing units by gear type was prepared. In order to accommodate for possible temporal variations in a single month the sampling intensity was set at a 10 days interval and accordingly data was collected three times a month from the selected locations.

Monitoring covered: fish catch (species by number and weight); fishing gear type and number, net area and mesh size; fishers type, sex, age, village and distance from fishing ground; time and duration of fishing.

5.2 Trends in catch of fish species stocked

The estimated catch (number of fish caught in sample areas on sample days iin sample gears, multiplied up to give a total estimate each year) was compared with the numbers of fish released (Table 5). This indicates that some species have been successfully re-established or reinforced

through stocking, but in other cases stocking had little impact or there has not been enough time to see any impact.

Out of the 15 species released, Chital, Foli, Gulsha, Pabda, and Shing were either only released in numbers in 2005, or were never released in sufficient numbers to have expected any real impact. The catch surveys from 2005-06 cover the period up to early 2006 and show these species being caught, but data from 2006-07 and later would be needed to see the trend in catch of subsequent generations of these species, so no conclusion is possible on an impact from re-stocking of these species.

Considering the native carps (*Labeo* sp.), in general these move from floodplains and beels into the main river system to breed (Ali 1997; Rahman 2005), so it was not sure if re-stocking would help establish self-sustaining populations. Kalibaush existed in the catches of all three wetlands before any were released or any habitat restoration work. Releases appear to have augmented populations and catches of this species since these have been higher in each site since the baseline. However, only in Turag-Bangshi has the trend been consistently up, and with catches in 2005-06 much higher than in the baseline, it would appear that this fish has been restored to the site.

Fishing year ->	•	1999-00	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06		Interpretation
Stocking year ->				2001	2002	2003	2004	2005	Total	
Turag-Bangshi										
Kalibaush (Labeo	released			10	144		13,622	4,717	18,493	Natural fishery, releases may have augmented and
calbasu)	estimated catch	8,508	14,184	10,815	21,927	36,237	69,504	188,710	349,886	helped to establish self sustaining populations
Rui (Labeo rohita)	released	Í	· · · · ·		26,434	109,510		· · · · ·	135,944	Natural fishery, releases may have augmented
	estimated catch	21,345	26,758	5,002	78,892	244,864	507,053	488,883	1,372,796	
Gonia (Labeo	released				5,051	24,332		19,754	49,137	Releases probably helped establish self sustaining
gonius)	estimated catch	0	0	0	628	25,011	15,201	117,801	158,640	populations
Deshi Sarputi	released			80				2,000	2,080	
(Puntius sarana)	estimated catch	0	0	0	183	183	0	343	708	no impact yet
Meni (Nandus	released			14					14	Re-established naturally, but habitat improvements
nandus)	estimated catch	0	14,504	28,962	60,151	169,798	205,555	210,683	689,653	of MACH likely to have helped by increasing
										aquatic vegetation
Foli (Notopterus	released			20					20	Fluctuates, but naturally increasing
notopoterus)	estimated catch	5,550	278,760	37,961	76,334	83,289	145,416	47,417	674,727	
Chital (Notopterus	released							2,000	2,000	Small population, too early to see any impact
chitala)	estimated catch	0	0	0	343	0	514	1,062	1,919	
Shing	released							2,000	2,000	Fluctuating population
(Heteropneustes	estimated catch	302,114	207,223	44,951	77,225	274,089	414,091	213,367	1,533,058	
fossilis)										
Pabda (Ompok	released			12				4,000	4,012	Fluctuates no evidence of change
pabda)	estimated catch	62,549	234,574	16,377	32,228	492,880	14,869	74,621	928,099	
Carps sub-total	released			10	31,629	133,842	13,622	24,471	203,574	
Total	released			136	31,629	133,842	13,622	34,471	213,700	
Hail Haor	1						I	I		
Kalibaush (<i>Labeo</i>	released			2,108	15,213		5,632	12,697	35,650	Natural fishery, releases may have augmented
calbasu)	estimated catch	22,778	5,139	7,043	26,448	13,033	145,710	23,810	243,959	
Rui (Labeo rohita)	released					117,253	52,468		169,721	Natural fishery, releases may have augmented
	estimated catch	13,501	45,651	48,609	105,803	65,259	585,679	174,413	1,038,915	
Gonia (Labeo	released			13,200	14,350	59,092	305,793	154,455	546,890	Natural fishery, releases may have augmented and
gonius)	estimated catch	18,895	15,980	216,096	402,733	56,333	273,461	212,330	1,195,827	possibly established self sustaining populations
Deshi Sarpunti	released			4,136	3,600			3,000	10,736	Releases appear not to have established self
(Puntius sarana)	estimated catch	0	0	41,513	28,938	0	2,447	2,298	75,195	sustaining population
Chital (Notopterus	released							6,004	6,004	Too early to see any impact
chitala)	estimated catch	0	0	0	904	149	0	5,394	6,447	
Ayer (Mystus aor)	released			384	2,934	500			3,818	Fluctuates no evidence of change
	estimated catch	3,298	106	0	39,513	500	5,458	2,553	51,428	
Gulsha (Mystus	released							650	650	Common with fluctuating population, too early to
cavasius)	estimated catch	366,497	930,069	4,657,993	862,097	285,876	514,984	115,548	7,733,065	see any impact

Table 5 Re-introduced fish species - numbers of fish introduced and estimated numbers of fish caught

Fishing year ->		1999-00	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06		Interpretation
Stocking year ->				2001	2002	2003	2004	2005	Total	
Carps sub-total	released			15,308	29,563	176,345	363,893	167,152	752,261	
Total	released			19,828	36,097	176,845	363,893	176,806	773,469	
Kangsha-Malijee										
Kalibaush (Labeo	released			16,940	175		5,298		22,413	Natural fishery, releases may have augmented
calbasu)	estimated catch		13,695	27,023	63,788	87,043	251,477	47,183	490,209	
Rui (Labeo rohita)	released				320	27,939	20,344		48,603	Natural fishery, releases may have augmented
	estimated catch		45,375	23,683	68,200	553,936	296,822	70,161	1,058,177	
Gonia (Labeo	released			12,780	11,028	7,439	69,119	12,200	112,566	Probably re-established through releases
gonius)	estimated catch		0	22,703	103,066	12,960	90,444	40,166	269,339	
Bata (Labeo bata)	released					6,534			6,534	Fluctuates no evidence of change, may have
	estimated catch		18,842	29,014	46,723	301,509	282,268	13,695	692,052	benefitted from releases
Deshi Sarpunti	released				2,090			1,000	3,090	Declining natual fishery, releases may not have
(Puntius sarana)	estimated catch		54,903	39,921	46,049	35,938	36,950	27,053	240,815	helped
Meni (Nandus	released				372				372	Releases in 2002 were adult (brood) fish which
nandus)	estimated catch		0	0	433,957	1,097,210	1,589,349	1,531,168	4,651,685	appear to have helped re-establish, taking advantage
										of more suitable habitat created through MACH
Shol (Channa	released			11,180		70			11,250	Probably re-established through releases
striata)	estimated catch		0	4,106	7,445	11,673	25,307	127,056	175,587	
Gojar (Channa	released			1,390					1,390	Unclear, does not appear to sustain from releases
marulius)	estimated catch		0	7,690	61	0	0	9,804	17,556	
Chapila (Gudusia	released					150			150	Fluctuates no evidence of change
chapra)	estimated catch		3,677	17,127	288,059	0	7,874	84,163	400,899	
Chital (Notopterus	released							2,000	2,000	Too early to see any impact
chitala)	estimated catch		0	0	0	0	31	1,256	1,287	
Shing	released							4,000	4,000	Too early to see any impact
(Heteropneustes	estimated catch		484,357	698,241	476,299	586,167	1,424,271	9,892,264	13,561,60	
fossilis)									0	
Pabda (Ompok	released				137			2,000	2,137	Fluctuates no evidence of change
pabda)	estimated catch		103,250	7,016	345,536	13,481	31,864	11,305	512,452	
Gulsha (Mystus	released				30				30	Fluctuates no evidence of change
cavasius)	estimated catch		147,522	52,023	151,352	85,266	373,294	26,686	836,143	
Carps sub-total	released			29,720	11,523	41,912	94,761	12,200	190,116	
Total	released			42,290	14,152	42,132	94,761	21,200	214,535	

Rui likewise was caught in all three sites in the baseline year, and releases appear to have augmented catches, but catches have fallen in years after releases in Hail Haor and Kangsha-Malijhee, whereas in Turag-Bangshi there were high catches of Rui also in 2004-05 and 2005-06 suggesting that this fish may be sustaining here, but also in Hail Haor in 2007 Rui and Mrigal fry were seen in the early monsoon indicating that they are now breeding in the area. Despite problems of poor water quality due to industrial pollution, this is the most likely of the sites to succeed in re-establishing more halthy populations of migratory major carps since the site includes a sizeable river which remains distantly connected to the main Jamuna-Padma system as well as to the floodplains in Kaliakoir.

A major effort was made to re-establish Goinna/Gonia in all three sites. In both Turag-Bangshi and Kangsha-Malijee it was absent in the baseline year, substantial estimated catches (much higher than the numbers released) since re-stocking started suggest that it has re-established in these sites. In Hail Haor the catch has increased very substantially since re-stocking started, but the estimated catches are similar to the numbers released so more time is needed to be sure if it now has a more healthy self-sustaining population (although many fry were seen in 2007). Another "minor carp" Bata was only stocked in Kangsha-Malijhee where it was already caught in the baseline, the catch increased when releases were made, but fell back to the baseline level in 2005-06 indicating a lack of long-lasting impact.

Deshi Sharputi was absent in Turag-Bangshi and Hail Haor, modest numbers were released but appear not to have sustained. However, in Kangsha-Malijee there was already a population with a reasonable catch in the baseline year, and despite releases it appears to have declined. As will be seen in the next section this is the one site that reported an increasing catch of the exotic but very similar Thai Shar puti. Assuming that there were no misidentifications by the monitoring teams, this raises an important question: whether Thai Shar puti may be reproducing in Kangsha-Malijhee and displacing the native species or even hybridising with it.

The beel resident Meni (*Nandus nandus*) appears to be one of the success stories largely due to restoration of habitat for it to overwinter in. It was absent in Kangsha-Malijhee in 2000-2002, but after the release of a modest number of brood fish in 2003 it quickly became common in fish catches and has continued to increase. It has also increased in Turag-Bangshi due to natural repopulation, while it was already common in Hail Haor before MACH.

Another successful re-introduction has been Shol in Kangsha-Malijhee, which was absent in the baseline catch, and after release of a good number of fry in 2002 has steadily increased in fishers catches suggesting that it has a sustainable and growing population. However, an attempt to reintroduce its close relative Gozar in the same year does not appear to have been successful. Similarly, Ayer was already present at a low level in Hail Haor catches, after releases the catches increased, but have since fallen to the baseline level, indicating that stocking has probably not helped to establish a population yielding a larger sustainable catch than before.

Re-stocking of fishes is not the only factor affecting changes in fish biodiversity and catches. It is unlikely to succeed without interventions such as sanctuaries, an end to dewatering, excavation of dry season water habitat, and closed seasons when fish are spawning since these restore previous environmental conditions. In addition success is affected by hydrological factors, in particular: connectivity of wetlands for fish migration routes, the timing of onset and extent of monsoon flooding, and water quality.

5.3 Changes in fish diversity

This section provides evidence of the changes in biodiversity recorded in the three wetlands. Table 6 summarizes the numbers of fish species recorded each year, while Fig. 1 summarizes changes in the composition of catch in terms of categories of fish.

Fig. 1 Catch composition by types of fish

Year	Hail	Turag	Kangsha
	Haor	Bangshi	Malijhee
Baseline	71	82	64
Impact-1	71	81	67
Impact-2	69	86	71
Impact-3	76	91	73
Impact-4	67	85	84
Impact-5	81	85	68
Impact-6	75	83	

Table 6 Number of fish species recorded in sample catches in monitoring areas

Years defined as: Hail Haor - April to March; Turag-Bangshi - May to April; Kansha-Malijhee - August to July. Baseline: 1999-00, Impact-1: 2000-01; Impact-2: 2001-02; Impact-3: 2002-03; Impact-4: 2003-04; Impact-5: 2004-05; Impact-6: 2005-06.

Fish biodiversity was assessed as a simple count of species recorded from the sampling program, which was a constant effort between years in each site. There has been a modest increase in the number of species recorded per year between the baseline years and subsequent years in Hail Haor and Kangsha-Malijhee sites – up to 10 more species in Hail Haor and up to 20 more species in Kangsha-Malijee. But there has been no notable change in numbers in Turag-Bangshi (Table 6).

Biodiversity does not relate only to the number of species recorded, but also the proportions of species present and how numerous each is. As can be seen from Fig. 1, in all three sites in the baseline year miscellaneous small fish of a number of species comprised a high proportion of the catch. In the less degraded fisheries (Hail Haor and Kangsha-Malijhee) the recovery has mainly been of other fish such as snakeheads, eels and small catfish able to over winter in the sanctuaries.

As Figure 1 shows, in the 2004 floods more major carp and exotic fish were caught due to escapes from over flooded ponds, which is unrelated with restoration of these fisheries, although there is some general increase in major carps and some of these have been released by the RMOs. The pattern of changing fish catch composition differs between the three sites – in Hail Haor most of the gains have been from higher catches of small catfish and snakeheads which benefit from sanctuaries and excavation. In Turag-Bangshi the baseline catches were very low indicating a highly degraded fishery and small fishes have increased rapidly with improved management and comprise over 50% of the total catch in each impact year. In Turag-Bangshi other species groups such as small catfish, snakeheads, large catfish and prawns have also recovered. By comparison in Kangsha-Malijhee site catches of small fishes as a guild of fish have hardly changed and most groups of fish have increased in proportion to the increased catches.

Year	Hail H	Iaor	Turag-Ba	angshi	Kangsha-Malijee		
	native fin fish	all fish	native fin fish	native all fin fish fish		all fish	
Baseline	2.759	2.801	3.221	3.242	2.643	2.696	
Impact 1	2.884	2.969	3.279	3.350	2.786	2.967	
Impact 2	3.303	3.419	3.275	3.310	2.826	2.919	
Impact 3	3.290	3.405	3.346	3.427	2.953	2.965	
Impact 4	3.242	3.357	3.097	3.184	2.968	3.082	
Impact 5	3.430	3.599	3.146	3.351	2.974	2.987	
Impact 6	3.294	3.428	3.239	3.415	-	-	

 Table 7 Biodiversity indices for fish catch (Shannon indices)

The dominant species by weight caught in all three sites included jat puti which is typical of floodplains and open waters in Bangladesh. Small shrimps were the highest percentage of catch (10-19%) in baseline and subsequent years in Turag-Bangshi and Kangsha-Malijhee sites. This is a concern, as de Graff et al. (2001) have argued, that a high proportion of shrimps in floodplain catches indicates a fishery that has been severely damaged as it lacks appropriate conditions for breeding and recruitment of larger and beel resident fishes.

Considering the quantities of fish caught by species, the diversity of native fish species caught has increased from the baseline. The indices calculated and reported in Table 7 are based on the weight of fish reported for each species in the catch from monitoring areas in each year and are a measure of the diversity – the higher the number of species and the more even the amount of fish spread across species, the higher the index. It appears that overall diversity of fish in Hail Haor has increased since MACH started, but despite the greatest gains in productivity being in Turag-Bangshi site there has been no change in the diversity of catch there, while increases in diversity of catch in Kansha-Malijee site have been very small because a few species dominate a relatively high proportion of the total catch.

5.4 Trends in main fish species caught

Tables 8 to 10 summarize the contributions of the most commonly caught fish species in each wetland towards total catch, and the trend over 5-7 years. Species are listed in order of overall percentage contribution to catch, those initialics were re-stocked, while exotic species names are in bold. Those species that have increased as a percentage of catch are highlighted. However, it must be remembered that catch per hectare has increased considerably during this period compared with the baseline, for example catches in Hail Haor were on average 88% higher in impact years 5 and 6 compared with the baseline, this means that the total catch of species such as Jat Puti increased even though the percentage contribution declined.

indoi (biccinio									
Species	Baseline	Impact-	Impact-	Impact-	Impact-	Impact-	Impact-	Total	Trend in proportion
		1	2	3	4	5	6		
Jat Puti	14.3	16.6	11.8	11.8	8.0	9.5	8.0	11.2	decline
Meni/Bheda	12.8	6.7	8.6	7.5	8.7	5.3	6.5	7.5	decline
Khalisha	13.6	3.5	6.0	6.9	9.8	3.9	4.5	6.3	decline
Taki	8.2	5.0	8.8	7.1	6.5	3.2	6.2	6.1	stable
Mola	7.7	23.4	3.2	2.5	0.7	1.8	0.9	5.1	increase then decline
Shol	3.1	1.8	4.1	4.4	7.7	2.8	6.9	4.3	increase
Tengra	3.3	4.3	2.7	6.6	3.5	3.0	2.8	3.8	increase then decline
Gojar	0.7	1.3	2.4	2.5	7.1	2.9	7.9	3.5	increase
Rui	0.2	1.4	1.6	2.2	2.2	5.7	7.9	3.5	increase
Foli	1.0	3.4	4.0	6.1	3.8	2.2	3.2	3.4	increase
Boal	8.6	1.3	2.4	1.5	0.6	6.0	2.5	3.4	decline
Kaikla	1.4	3.1	2.9	4.3	3.5	3.1	2.1	3.0	increase
Guchi Baim	1.5	2.5	3.1	3.2	2.6	2.2	4.6	2.8	increase
Koi	8.6	0.6	2.0	1.9	2.4	0.8	1.8	2.2	decline
Catla	0.0	0.0	0.1	0.6	0.5	7.8	0.9	2.1	increase then decline
Shing	2.4	1.5	2.9	1.9	2.4	1.0	2.0	1.9	stable
Bele	0.1	1.2	2.4	1.3	1.2	2.6	2.8	1.8	increase
Magur	0.6	1.4	2.5	2.6	2.6	1.0	1.8	1.7	increase
Thengua Echa	0.1	2.3	2.2	1.3	2.0	1.5	2.6	1.7	increase
Kanchan Puti	0.2	1.7	2.4	2.2	2.4	1.6	1.0	1.6	increase then decline
Gol Chanda	0.5	1.0	1.6	1.8	2.3	1.9	1.4	1.5	increase
Gura Echa	1.2	1.1	2.0	1.0	1.2	1.0	2.3	1.4	stable
Dankina	0.9	1.6	1.4	1.7	1.4	1.4	0.6	1.3	stable
Common Carp	0.0	0.2	0.8	1.0	0.9	2.7	1.3	1.2	increae
Goinna	0.1	0.2	1.1	1.6	0.6	1.2	2.5	1.2	increase
Chuna Khalisha	1.8	1.5	1.8	1.2	1.4	0.8	0.9	1.2	decline
Tit Puti	0.6	0.9	1.4	1.0	2.0	1.3	0.8	1.1	increase then decline
Tepa/Futkora	0.3	1.0	1.2	1.1	0.9	1.5	1.5	1.1	increase
Kani Pabda	0.1	0.3	1.3	1.2	1.1	2.0	1.1	1.1	increase
Tara Baim	1.3	0.7	0.3	1.0	0.8	1.4	0.9	1.0	stable

Table 8 Fish species contributing 1% or more of catch, with % of catch by year and trend - Hail Haor (Sreemongal)

30 species 1% or more of total catch

Italic = restocked in substantial numbers, Bold = exotic

It would appear that carps including exotic species have increased considerably in catches in all three sites. Common Carp is know to reproduce in Bangladesh and presumably has established self-sustaining populations in these wetlands which are still increasing, whereas Silver Carp are presumably escapes from ponds. However, the growing Thai Sharputi catch in Kangsha-Malijhee, is of note, since the catch of the native Deshi Sharputi is falling despite re-stocking. This raises a question whether the closely related exotic species is reproducing and displacing the native species. Other species that have gained are diverse including snakeheads, eels and other bottom feeders in Hail Haor, and in Turag-Bangshi surface filter feeding Chapila and other small fishes.

Species	Baseline	Impact-	Impact-	Impact-3	Impact-	Impact-	Impact-	Total	Trend in
species	Busenne	1	2	impact 5	4	5	6	Total	proportion
Chapila	6.4	7.3	8.1	8.3	16.2	18.9	14.9	13.8	increase
Jat Puti	8.6	12.5	10.6	10.1	13.3	9.1	10.4	10.9	stable
Gura Echa	13.6	8.7	11.2	9.5	7.7	3.1	2.4	6.5	decline
Bele	3.8	5.2	5.7	5.2	7.1	3.8	4.3	5.2	increase
Tit Puti	2.4	6.0	7.5	6.0	5.7	3.0	4.3	4.9	increase
Taki	7.5	7.1	6.8	6.1	3.1	2.9	5.3	4.6	decline
Guchi Baim	4.5	4.0	4.8	3.8	4.4	2.6	4.2	3.9	stable
Mrigel	2.1	2.4	1.6	2.9	2.0	6.7	5.1	3.8	increase
Rui	0.7	3.0	0.7	4.3	3.3	5.2	4.7	3.7	increase
Tengra	8.7	6.0	3.7	3.6	2.5	2.4	2.8	3.4	decline
Gol Chanda	0.7	1.8	2.5	2.6	3.9	2.0	1.5	2.4	increase
Lamba Chanda	3.2	1.4	2.0	2.3	2.1	1.5	1.4	1.8	stable
Chela	1.4	1.3	1.9	1.4	2.4	1.5	1.3	1.7	stable
Guzi air/ Guzkata	0.0	0.0	2.5	2.4	1.5	1.9	2.2	1.7	increase
Boro Baim	6.9	2.8	5.3	1.3	0.8	0.6	1.3	1.7	decline
Silver Carp	0.1	0.1	0.0	0.8	0.6	4.7	0.9	1.6	increase
Common Carp	0.4	0.1	0.1	0.3	0.1	3.3	3.8	1.5	increase
Shol	1.5	1.9	1.8	2.0	1.1	1.3	1.7	1.5	stable
Kaikla	1.3	2.3	1.0	1.8	1.9	1.1	0.6	1.4	stable
Chuna Khalisha	0.5	0.9	0.9	1.4	2.0	1.2	0.9	1.3	increase
Chola Puti	2.2	2.2	0.9	2.9	0.3	1.1	0.7	1.2	decline
Bagha Puti	0.0	2.8	1.0	2.1	0.7	1.0	1.0	1.2	increase
Catla	2.2	0.3	0.0	0.1	0.1	2.4	2.7	1.2	fluctuates
Ranga Chanda	0.7	0.7	2.1	1.5	1.6	0.8	0.4	1.1	stable
Mola	0.3	0.9	1.0	1.0	1.1	0.9	1.0	1.0	stable
Khalisha	0.1	0.6	0.8	0.9	1.4	1.0	1.3	1.0	increase
Lal Khalisha	0.2	0.4	0.9	1.1	1.2	0.8	1.3	1.0	increase
Satka Chingri	1.6	2.1	1.1	1.5	0.7	0.8	0.7	1.0	decline

Table 9 Fish species contributing 1% or more of catch, with % of catch by year and trend - Turag Bangshi (Kaliakoir)

28 species 1% or more of total catch

Italic = restocked in substantial numbers, Bold = exotic

Besides this some native fishes appear to have disappeared from these wetlands since the baseline year: Gharua *Clupisoms garua*, Boiragi Icha (a type of prawn), and Kecho Baim *Ophichthys boro* in Hail Haor; Mola Puti *Puntius guganio and* Potka *Tetradon potaca* in Turag-Bangshi; and Putani Puti *Puntius phutunio*, Narkeli Chela *Oxygaster bacaila*, Naftani *Osphronemus nobilis*, and Putul *Botia lohachata* in Kangsha-Malijhee. Although they have not been recorded from comparable monitoring involving higher catches in the impact years it is difficult to say if they have disappeared from the entire area of these wetlands, but at best they must be very scarce there and none were common in the baseline year catches. However, it is not possible to identify any reasons for apparent loss of these species.

Species	Baseline	Impact-1	Impact-2	Impact-3	Impact-4	Impact-5	Total	Trend in proportion
Gura Echa	19.2	14.1	18.2	21.3	15.4	20.0	18.1	stable
Jat Puti	16.1	13.7	11.8	8.4	12.0	11.5	11.7	fluctuates
Taki	5.9	7.4	7.9	5.8	6.0	7.2	6.6	stable
Mrigel	0.3	3.0	6.0	7.9	10.4	4.8	6.5	increase
Tengra	11.0	6.2	7.4	4.6	5.2	5.8	6.2	decline
Boal	11.6	7.9	5.5	2.9	5.2	3.8	5.4	decline
Common Carp	2.5	4.9	7.0	5.9	5.0	5.9	5.4	increase
Bele	4.8	8.4	5.2	5.3	4.3	5.5	5.3	stable
Guchi Baim	5.4	3.3	6.0	4.6	4.3	5.4	4.9	stable
Thai Shor Puti	0.4	2.5	3.1	3.8	4.7	3.8	3.5	increase
Tara Baim	3.1	4.7	3.4	3.6	2.1	3.5	3.2	stable
Rui	1.4	0.4	1.1	4.6	2.6	0.7	2.1	fluctuates
Tit Puti	3.5	4.6	1.3	2.4	1.3	1.9	2.1	decline
Gutum	3.2	3.3	1.8	1.6	1.6	2.0	2.0	decline
Silver Carp	0.0	1.7	0.5	3.1	2.0	0.6	1.5	increase
Gol Chanda	1.7	1.7	1.2	1.4	1.2	1.5	1.4	stable
Boro Baim	1.7	1.3	2.0	1.0	0.8	1.1	1.2	stable
Kaikla	0.8	0.9	0.4	0.5	1.5	1.8	1.1	increase
Bata	0.2	0.2	0.5	2.8	1.4	0.1	1.0	fluctuates
Chela	1.0	1.0	0.4	1.1	1.1	1.5	1.0	stable

Table 10 Fish species contributing 1% or more of catch, with % of catch by year and trend – Kongsha-Malijhee (Sherpur)

20 species 1% or more of overall catch

Italic = restocked in substantial numbers, Bold = exotic

5.5 Other wildlife

Although surveys of plants, birds and other wildlife were conducted at the start of MACH in Hail Haor and Turag-Bangshi sites, few changes in plant diversity were expected as a result of MACH interventions, apart from tree planting which for example has seen the restoration of patches of swamp and riparian forest in the sites. Of the sites, Hail Haor has historically been regarded as an important site for wetland biodiversity in Bangladesh, with relatively more information available on, for example, birds recorded there. However, wintering waterfowl numbers had disappeared from tens of thousands reported in the late 1960s to a handful at the start of MACH. With the creation of a permanent wetland sanctuary covering about 100 ha in Baikka Beel in late 2003, the RMO has banned fishing, hunting, and collection of aquatic plants, except for limited grazing in part of the area.

Between 2004 and April 2007, 113 species of birds were recorded within the 100 ha sanctuary. Both numbers and diversity have increased, reaching 7,200 birds of 35 water bird species in January 2007 (Fig. 2). These include large flocks of Fulvous and Lesser Whistling-duck; Northern Pintail, Common

Teal, Garganey and Purple Swamphen. Rare globally threatened species have also returned to the area: several Pallas's Fish Eagle and Greater Spotted Eagle (both Vulnerable) now spend the winter here, as do the near-threatened Black-headed Ibis and Ferruginous Pochard. Overall 147 species of bird had been recorded in Hail Haor up to February 2000, but by April 2007 an additional 22 species had been added, the total includes five threatened and seven near-threatened species (P. Thompson personal records; Thompson et al. 1993; Thompson and Johnson 2003).

6. Conclusion

Healthy floodplains are rich in floral and faunal diversity, including insects, mollusks, crustaceans, frogs, turtles, fish, birds, and many aquatic plants. Surveys in Bangladesh under Flood Action Plan (FAP 6 1993) in floodplains in the northeast of the country recorded 154 species of fish and prawn, and 104 species have been recorded in the country's only freshwater Ramsar site and ecologically most diverse freshwater wetland - Tanguar Haor in Sunamgong District. FAP 17 (1995) recorded 79 to 89 species of fish and prawn in different heavily used and partly embanked floodplains. The three MACH wetlands compare favorably with these standards by the end of the project period.

The evidence presented shows that fish diversity has increased. It seems that this is the product mainly of sanctuaries and habitat restoration. Re-stocking of indigenous fishes has also played a part and there is evidence that this has helped to re-establish sustaining populations of some fish species. Although stocking of native carps such as Rui, has mostly likely only resulted in those fish gaining weight in the floodplains and producing higher catches, there is some evidence that in the Turag-Bangshi may be able to migrate to spawn in the main river system, and that some carps have spawned in Hail Haor where fry were seen in the early monsoon in 2007 before any cultured fish could have escaped from ponds.

Based on this experience, some lessons and recommendations for re-stocking fish are drawn:

- Identify wild sources for indigenous fishes /fries where they can be collected by the community/ project's own initiative and where collection will not adversely affect the parent stock (except major carp).
- The fry of indigenous carps can be collect from government or private hatcheries and nurseries.
- Visit the hatcheries / nurseries before stocking to ensure the quality of fry.
- Use oxygenated poly bags for carying small fry instead of aluminium pots or drums to reduce mortality.
- Carry the optimum quantity of fries 250 to 500 (depending on size) in each poly bag.
- Maintain the stocking time within June to August each year for better results.
- Use a sunny day, either morning or afternoon, for stocking, but not in mid day.
- To save the fries avoid rainy days, cloudy situation or high temperature when releasing.
- Use experienced persons to handle the fries.
- Ensure optimum water in sanctuary in the dry season to support the re-stocked brood fish.
- Ensure there are sufficient materials such as bamboo and branches in sanctuaries around the year to provide good habitat and safety for fish.

References

Ali, M.Y. (1997). Fish, Water and People. University Press Ltd., Dhaka.

FAP 6 (1993). Northeast Regional Water Management Project Wetland Resources Specialist Study. Flood Action Plan 6, Bangladesh Water Development Board and Flood Plan Coordination Organisation, Dhaka.

FAP 17 (1995). Fisheries Studies and Pilot Project Final Report. Flood Action Plan 17, Overseas Development Administration, UK.

De Graaf, G., Born, B., Uddin, A.K.M., and Marttin, F. (2001). *Floods, Fish and Fishermen*. University Press Ltd., Dhaka

IUCN Bangladesh. (2000). Red Book of Threatened Fishes of Bangladesh. IUCN – The World Conservation Union, Dhaka

MACH (2006). MACH Briefing packet part 2 performance monitoring. Management of Aquatic ecosystems through Community Husbandry, Winrock International, Dhaka.

Mountfort, G. (1969). The Vanishing Jungle. Collins, London.

Rahman, A. K. A. (2005). Freshwater Fish of Bangladesh. Dhaka University, Dhaka.

Sachse (1917). Bengal District Gazetteers: Mymensingh. Bengal Secretariat Book Depot, Calcutta.

Thompson, P.M., Harvey, W.G., Johnson, D.L., Millin, D.J., Rashid, S.M.A., Scott, D.A., Stanford, C. and Woolner, J.D. (1993). Recent notable bird records from Bangladesh. *Forktail: Journal of the Oriental Bird Club* 9: 13-44.

Thompson, P.M. and Johnson, D.L. (2003). Further notable bird records from Bangladesh. *Forktail: Journal of the Oriental Bird Club* 19: 85-102.

Annex 1: Fish Species Diversity – lists of species by year and site

Family sequence follows IUCN Bangladesh (2000) Sequence within a family is alphabetical

Scientific names follow FishBase (November 2006 download) where available, and otherwise IUCN Bangladesh (2000) Bangla name follows local usage

 $\sqrt{1}$ = present in sample catches

X = absent in sample catches

is species biversity of than that by year (based on sample of fishers' catches in monitored areas

Species (Bengali Name)	Species (Scientific Name)	Baseline	Impact1	Impact2	Impact3	Impact4	Impact5	Impact6
		1999-00	2000-	2001-	2002-	2003-	2004-	2005-
			01	02	03	04	05	06
Feather backs	Notopteridae							
Chital	Chitala chitala	Х	X	X			X	
Foli	Notopterus notopoterus							
Snake eels	Ophichthidae							
Kecho Bime	Pisodonophis boro		Х	Х	Х	Х	Х	Х
Shads, herrings etc.	Clupeidae							
Kachki	Corica soborna		Х	Х	Х	Х		Х
Chapila	Gudusia chapra							
Afila	Gudusia varigata	Х	Х	Х	Х	Х	\checkmark	\checkmark
Hilsha (Jatka)	Tenualosa ilisha	Х	Х	Х	Х	Х		Х
Carps, minnows and barbs	Cyprinidae							
Dhela	Amblypharyngodon microlepis	Х	Х	Х	Х		Х	Х
Mola	Amblypharyngodon mola							
Bighead Carp	Aristechthys nobilis	Х	Х	Х		Х		
Nayan Bali	Asidoparia jaya	Х	Х	Х	Х	Х	Х	
Thai Shor Puti	Barbonymus gonionotus							
Catla	Catla catla		Х					
Chep Chela	Chela laubuca							
Mrigel	Cirrhinus cirrhosus							
Raek	Cirrhinus reba	Х	Х	Х		Х		Х
Tatkini	Crossocheilus latius	Х		Х	Х	Х		Х
Grass Carp	Ctenopharyngodon idellus							
Comon Carp/Karfu	Cyprinus carpio							
Silver Carp	Hypophthalmichthys molitrix	Х		X	V		V	
Vangra	Labeo boga		Х		Х	Х	Х	Х
Kalibaush	Labeo calbasu	V						
Goinna	Labeo gonius	V			V		V	
Rui	Labeo rohita	V	V	V	V	V	V	V
Moa	Osteobrama cotio	X	Ń	V	V	X	V	X
Chola Puti	Puntius chola	V	Ń	X	Ń	V	V	
Kanchan Puti	Puntius conchonius	V	Ń	V	Ń	V	V	V
Jhili Puti	Puntius gelius	V	V	V	V	V	V	V
Mola Puti	Puntius guganio	X	X	Ń	Ń	X	Ń	Ń
Futani Puti	Puntius phutunio	V	V	Ń	Ń	X	X	X
Shar Puti	Puntius sarana	X	X	Ń	Ń	X	V	1
Iat Puti	Puntius sonhore	1	1	Ń	Ń	1	V	۰ ا
Teri Puti	Puntius terio	v v	x	x	J	, v	x	, V
Tit Puti	Puntius tieto	v v	N V	V	J	, V	√ √	, V
Dankina	Rashora daniconius	v v	Ń	Ń	J	, V	V	, V
Elong	Rasbora elanga	v v	x	x	x	x	V	x
Narkeli Chela	Salmostoma bacalia	v V	1	1	1	X	ب م	X
Chela	Salmostoma pholo	v v	Ń	Ń	J	1	V	1
Loaches	Balitoridae	,		,	,	,	,	,
Buth Koi/Bali Chata	Acanthocobitis botia	x	N	N	x	x	N	x
/Balitora	neumocooms oonu	~	· ·	,	21	21	,	24
Loaches	Cobitidae	1						
Rani	Botia dario	V	N	J	J	N	J	1
Gutum	Lenidocenhalichthys auntea	1	۰ ۷	1	1	1	1	1
Gora Gutum/Ganga Shagor	Somilentes gongota	1	۰ ۷	1	x	1	1	1
Bagrid catfish	Bagridae	, v	, v	v	1	v	Y	v
Bairi Tengra	Mystus tengara	J			7			
L'ajri i viigiu	mysins icinguia	· ·	v	v	N N	v	N N	۲

Species (Bengali Name)	Species (Scientific Name)	Baseline	Impact1	Impact2	Impact3	Impact4	Impact5	Impact6
,		1999-00	2000-	2001-	2002-	2003-	2004-	2005-
			01	02	03	04	05	06
Golsa	Mystus bleekeri							\checkmark
Tengra	Mystus vittatus							
Kabasi Tengra	Mystus cavasius	Х	Х	Х				\checkmark
Rita	Rita rita	Х	Х	Х	Х	Х		Х
Air	Sperata aor			Х				
Guzi air/Guzkata	Sperata seenghala	Х	Х	Х	Х		Х	Х
Butter cat fishes etc	Siluridae							
Kani Pabda	Ompok bimaculatus							
Pabda/Madhu Pabda	Ompok pabda							
Boal	Wallago attu							
Schilbeid catfish	Schilbeidae							
Baspata/Kazuli	Ailia coila	Х	Х	Х		Х	Х	Х
Ghaura	Clupisoma garua		Х	Х	Х	Х	Х	Х
Bacha	Eutropiichthys yacha	1						Х
Batasi	Pseudeutropius atherinoides	X	X	X	X	X	Ń	X
Pangas	Pangasiidae							
Thai Pangas	Pangasius hypophthalmus	X	X	X	V	X	V	X
Catfish	Sisoridae							
Bagair*	Bagarius bagarius							
Senja (Eusufi)	Gagata cenia	x			x	x	x	X
Air breathing catfish	Clariidae	21	,	,	21	21	21	21
Magur	Clarius batrachus	N	V	N	V	N	V	V
African Magur	Clarias garianinus	v	2	v	v	v	v	v
Stinging cotfish	Heteroppeustidae	Λ	v	Λ	Λ	Λ	Λ	Λ
Shing Shing	Hatarophaustas fossilis	2	N	2	2	2	2	2
Sinnig Saugare head antifished	Chaoidaa	v	v	N	N	v	v	v
Square head cathisties	Characher							al
Chaka/Gangina/Kowakata	Chaca chaca	N	N	N	N	N	N	V
Gars	Venente den erneite	al				al		al
Kaikia Tan minnama	A place allide a	N	N	N	N	N	N	V
Top minnows	Apiochellidae			-1	./			./
	Apiocneiius panchax	Ň	N	Ň	Ň	Ň	Ň	Ň
Mud eels	Synbranchidae	1						
Kuicha	Monopterus cuchia	ν	N	N	N	N	N	N
Glass perch	Ambassidae	.1	.1	.1	.1	.1	.1	.1
Lamba Chanda	Chanda nama	N	N	N	N	N	N	N
Ranga Chanda	Parambassis ranga	N	N	N	N	N	N	N
Gol Chanda	Pseudambassis baculis	ν	N	N	N	N	N	N
Jew fish, croakers	Sciaenidae	V	.1	V	.1	.1	37	v
Poa	Otolithoides pama	X	N	X	N	N	X	X
Mud perch	Nandidae	,	1				1	
Meni/Bheda	Nandus nandus	ν	N	N	N	N	N	N
Badis	Badidae		1		1		,	1
Kali/Napti Koi	Badis badis	ν	γ	N	N	N	N	N
Mullets	Mugilidae	37	37		37	37	37	37
Khalla/Kharshulla	Rhinomugil corsula	X	X	N	X	X	X	X
Gobies	Gobiidae		1		1		,	
Bele	Glossogobius giuris	γ	N	N	N	N	N	N
Climbing perch	Anabantidae		1		1		,	1
Koi	Anabas testudineus	N	N	N	N	N	N	N
Gouramies	Osphronemidae							
Khalisha	Colisa fasciata	V	V	V	V	V	V	V
Boicha Chuchra/Chuna Khalisha	Colisa labiosa	\checkmark	\checkmark	V	V	V	V	N
Lal Khalisha	Colisa lalia	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Naftani/Berkul	Ctenops nobilis							
Reckha Kholisha: Madha	Trichogaster chuna							
Boicha; Sheel Boicha	0							
Tilapia	Cichlidae							
Telapia	Oreochromis mossambicus					Х		
Nailotika	Oreochromis niloticus	Х	Х	Х	Х	Х		
Snakeheads	Channidae							

Species (Bengali Name)	Species (Scientific Name)	Baseline	Impact1	Impact2	Impact3	Impact4	Impact5	Impact6
		1999-00	2000-	2001-	2002-	2003-	2004-	2005-
			01	02	03	04	05	06
Cheng	Channa gachua							\checkmark
Gojar	Channa marulius							
Taki	Channa punctata							\checkmark
Shol	Channa striata							\checkmark
Spiny eels	Mastacembelidae							
Tara Baim	Macrognathus aculeatus							
Guchi Baim	Macrognathus pancalus							
Boro Baim	Mastacembelus armatus							
Puffer fish	Tetraodontidae							
Potka	Chelonodon patoca					Х	Х	
Tepa/Futkora	Tetraodon cutcutia							\checkmark
Fresh water prawn	Palaemonidae							
Thengua Echa	Macrobrachium birmanicus							\checkmark
Gura Echa	Macrobrachium lamarrei							\checkmark
Satka Chingri	Macrobrachium malcolmsonii	Х	Х				Х	\checkmark
Golda Echa	Macrobrachium rosenbergii	Х	Х	Х	Х	Х		
Dimua/Kathalia Echa	Macrobrachium villosimanus			Х				
Boiragi Echa	Prawn Sp.		Х	Х	Х	Х	Х	Х

* reported by fishers in Gopla River within the haor but not recorded in catch monitoring

Fish Species Diversity of Turag-Bangshi site by year (based on sample of fishers' catches in monitored areas)

Species (Bengali Name)	Species (Scientific Name)	Baseline	Impact1	Impact2	Impact3	Impact4	Impact5	Impact6
			2000-	2001-	2002-	2003-	2004-	2005-
		1999-00	01	02	03	04	05	06
Feather backs	Notopteridae							
Chital	Notopterus chitala	Х	Х	Х		Х		
Foli	Notopterus notopoterus						\checkmark	\checkmark
Shads, herrings etc.	Clupeidae							
Kachki	Corica soborna							
Mamoli Chapila	Gonialosa manminna	Х					Х	Х
Chapila	Gudusia chapra							
Hilsha (Jatka)	Tenualosa ilisha						\checkmark	\checkmark
Carps, minnows and barbs	Cyprinidae							
Dhela	Amblypharyngodon microlepis							
Mola	Amblypharyngodon mola							
Bighead Carp	Aristechthys nobilis	Х	Х	Х		Х		Х
Nayan bali	Aspidoparia jaya			V	V			
Peali	Aspidoparia morar			V	V			
Thai Shor Puti	Barbonymus gonionotus			V	V			
Catla	Catla catla			V	V			
Chep Chela	Chela laubuca		Х	Х	Х			
Mrigel	Cirrhinus mrigala			V	V			
Tatkini	Crossocheilus latius			V	V			
Grass Carp	Ctenopharyngodon idellus	Х		V	V			
Common Carp/Karfu	Cyprinus carpio							
Baspata/Kazuli	Danio devario			V	V			
Silver Carp	Hypophthalmichthys molitrix			V	V			
Vangra	Labeo boga			V	Х	Х		
Kalibaush	Labeo calbasu							
Goinna	Labeo gonius	Х	Х	Х				
Rui	Labeo rohita			V	V			
Chola Puti	Puntius chola			V	V			
Kanchan Puti	Puntius conchonius			V	V			Х
Jhili Puti	Puntius gelius							
Mola Puti	Puntius guganio	Х	Х			Х	Х	Х
Futani Puti	Puntius phutunio		Х	Х	Х	Х	Х	Х
Shar Puti	Puntius sarana	Х	Х	Х			Х	
Jat Puti	Puntius sophore							
Bagha Puti	Puntius stigma		\checkmark				\checkmark	\checkmark

Species (Bengali Name)	Species (Scientific Name)	Baseline	Impact1	Impact2	Impact3	Impact4	Impact5	Impact6
1 (5)			2000-	2001-	2002-	2003-	2004-	2005-
		1999-00	01	02	03	04	05	06
Teri Puti	Puntius terio	X	X	X	X	√		√
Tit Puti	Puntius ticto	V			V	Ń	Ń	Ń
Fesha	Raconda russeliana	V	X	X	Ń	X	X	X
Dankina	Rasbora daniconius	V			Ń	V	V	V
Narkeli Chela	Salmostoma bacalia	V	X	X	X	X	X	X
GangChela/Ghora Chel	Salmostoma (Oxygaster) gora	v v	X	√	√	N V	√ √	N V
Chela	Salmostoma (Oxygaster) gora	J	√	J.	J	, v	J	, v
Logches	Balitoridae	,	•	•	,	,	,	,
Buth Koj/Bali Chata/Balitora	Nemacheilus batia	N	N	N	N	N	N	x
Longhos	Cobitidoo	v	v	v	v	v	v	Λ
Dani	Potia dario	1	N	2	2	2	2	2
Raili Dutul	Bolia dallo Rotig lohgehata	N	v	v	v	v	v	v
<u>rutun</u>	Lonio do contrata	N	<u></u>	<u>^</u>	<u> </u>	<u>^</u>	<u> </u>	<u>^</u>
Guium	Leptoaocephatus guntea	N	N	N	N	N	N	N
Gora Gutum/Ganga Snagor	Someleptes gongota	Ň	Ň	Ň	Ň	Ň	Ň	Ň
Bagrid catfish	Bagridae	37		37		37	37	37
Tengra (Batasio)	Batasio batasio	X		X	N	X	X	X
Golsa	Mystus bleekeri	N	N	N	N	N	N	N
Kabasi Tengra	Mystus cavasius	Х	Х	N	N	X	N	X
Bajri Tengra	Mystus tengara	X	X	V	N	V	N	V
Tengra	Mystus vittatus							
Rita	Rita rita				√		√	
Air	Sperata aor							
Guzi air/Guzkata	Sperata seenghala		Х	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Butter catfish, etc	Siluridae							
Kani Pabda	Ompok bimaculatus		\checkmark				Х	Х
Pabda/Madhu Pabda/	Ompok pabda							
Kowakata/Ghorakata								
Boal	Wallago attu							
Schilbeid catfish	Schilbeidae							
Ghaura	Clupisoma garua							
Bacha	Eutropiichthys vacha	V						
Batasi	Pseudentropious (Clupisoma)	V			V	V	Х	V
	atherrinoides							
Silong	Silonia silondia					Х	Х	
Pangas	Pangasiidae							
Thai Pangas	Pangasius sutchi	Х	Х		Х	Х		Х
Catfish	Sisoridae							
Bagha Air	Bagarius bagarius	V			V	V	V	V
Peashi	Conta conta	V	V	V	V	V	V	V
Senia (Eusufi)	Gagata cenia	X	X	, V	, V	Ń	, V	Ń
Gang Tengra	Nanora (Gaoata) viridescens	X	X	, v	x	x	x	x
Chenua	Sisor rhabdonhorus	X	X	x	$\sqrt{1}$	$\sqrt{1}$	X	X
Air breathing catfich	Clariidae		71		,	,		
African Magur	Clarias garieninus	v	1	v	1	v	v	v
Magur	Clarius batrachus	1	1	1	1		1	
Stinging coffich	Hataronnaustidaa	N	V	v	V	v	V	v
Shing	Heteropheustas fossilis	1	N	2	2	2	2	2
Sinng Saugra handed astfish	Chasidaa	N	v	v	v	v	v	v
Square-neaded catrisi	Chaba ab aba			al			v	
Chaka/Gangina/Kowakata		N	N	N	N	N	Λ	N
	Belonidae							
Kaikia	Xenentoaon cancila	Ň	Ň	Ň	Ň	Ň	Ň	Ň
Top minnows	Aplochellidae							
Tin Chokha	Aplocheilus panchax	γ	γ	N	N	N	N	N
Mud eels	Sybranchidae	,	,		,		,	
Kuicha	Monopterus (Cuchia) cuchia	V		X	N	V	N	V
Glass perch	Ambassidae	,	,	, .	,	, .	,	, .
Lamba Chanda	Chanda nama	√.		√	√	ν.	√	ν.
Ranga Chanda	Chanda ranga							
Gol Chanda	Chanda baculis							
Jew fish, croakers	Sciaenidae							
Poa	Otolithoides (Pama) pama		\checkmark	\checkmark				

Species (Bengali Name)	Species (Scientific Name)	Baseline	Impact1	Impact2	Impact3	Impact4	Impact5	Impact6
			2000-	2001-	2002-	2003-	2004-	2005-
		1999-00	01	02	03	04	05	06
Mud perch	Nandidae							
Meni/Bheda	Nandus nandus	Х						
Badis	Badidae							
Kali/Napti Koi	Badis badis							
Mullets	Mugilidae							
Khalla/Kharshulla	Rhinomugil (Mugil) corsula		\checkmark	\checkmark				
Gobies	Gobiidae							
Gugri Bila	Brachygobius nunus		\checkmark	\checkmark				Х
Bele	Glossogobius giurius		\checkmark	\checkmark				
Climbing perch	Anabantidae							
Koi	Anabas testudineus			V				
Gouramies	Osphronemidae							
Khalisha	Colisa fasciatus			V				
Chuna Khalisha	Colisa laboisa							
Lal Khalisha	Colisa lalia			V				
Naftani/Berkul	Ctenops (Osphronemus) nobilis		Х	Х	Х	Х	Х	Х
Tilapia	Cichlidae							
Telapia	Oreochromis (Telapia)		\checkmark					
	mossambicus							
Snakeheads	Channidae							
Cheng	Channa gachua							
Gojar	Channa marulius	Х				Х		
Taki	Channa punctata							
Shol	Channa striata						\checkmark	\checkmark
Spiny eels	Mastacembelidae							
Tara Baim	Macrognathus aculeatus							
Guchi Baim	Macrognathus pancalus							
Boro Baim	Mastacembelus armatus			\checkmark				
Puffer fish	Tetraodontidae							
Potka	Chelonodon patoca				Х			
Tepa/Futkora	Tetraodon cutcutia							
Freshwater prawn	Palaemonidae							
Gura Echa	Macrobrachium lamrrei							
Satka Chingri	Macrobrachium malcolmsonii		\checkmark					
Golda Echa	Macrobrachium rosenbergii		\checkmark					
Dimua/Kathalia Echa	Macrobrachium villosimanus		\checkmark					
Total		82	81	86	91	85	85	83

Fish Species Diversity of Kangsha-Malijhee site by year (based on sample of fishers' catches in monitored areas)

Species (Bengali Name)	Species (Scientific Name)	Baseline	Impact1	Impact2	Impact3	Impact4	Impact5
				2002-	2003-	2004-	2005-
		2000-01	2001-02	03	04	05	06
Feather backs	Notopteridae						
Chital	Notopterus chitala	Х	Х	Х	Х		
Foli	Notopterus notopoterus						
Shads, herrings etc.	Clupeidae						
Chapila	Gudusia chapra	\checkmark	\checkmark		Х		\checkmark
Hilsha (Jatka)	Tenualosa ilisha	X	\checkmark				Х
Carps, minnows and barbs	Cyprinidae						
Dhela	Amblypharyngodon microlepis				Х		
Mola	Amblypharyngodon mola	\checkmark	\checkmark				\checkmark
Bighead Carp	Aristechthys nobilis	X	Х		Х	Х	\checkmark
Thai Shor Puti	Barbonymus gonionotus						
Catla	Catla catla						
Chep Chela	Chela laubuca						
Mrigel	Cirrhinus mrigala	\checkmark	\checkmark				\checkmark
Raek	Cirrhinus reba	Х			Х	Х	Х
Tatkini	Crossocheilus latius		\checkmark				\checkmark

Species (Bengali Name)	Species (Scientific Name)	Baseline	Impact1	Impact2	Impact3	Impact4	Impact5
				2002-	2003-	2004-	2005-
		2000-01	2001-02	03	04	05	06
Grass Carp	Ctenopharyngodon idellus						
Common Carp/Karfu	Cyprinus carpio						
Silver Carp	Hypophthalmichthys molitrix						
Baspata/Kazuli	Danio devario	Х	Х	Х			Х
Bata	Labeo bata						
Vangra	Labeo boga		Х				
Kalibaush	Labeo calbasu						\checkmark
Goinna	Labeo gonius	Х					
Nandil	Labeo nandina						
Rui	Labeo rohita						
Chola Puti	Puntius chola		Х		Х	Х	Х
Kanchan Puti	Puntius conchonius						
Jhili Puti	Puntius gelius		Х	Х			Х
Mola Puti	Puntius guganio		Х	Х	Х	Х	Х
Futani Puti	Puntius phutunio	Х	Х		Х	Х	Х
Shar Puti	Puntius sarana						
Jat Puti	Puntius sophore						
Bagha Puti	Puntius stigma	Х					
Teri Puti	Puntius terio	Х	Х	Х			Х
Tit Puti	Puntius ticto						
Dankina	Rasbora daniconius						
Elong	Rasbora elanga	Х	Х	Х	Х		Х
Gang Chela/Ghora Chel	Salmostoma (Oxygaster) gora		Х				
Chela	Salmostoma (Oxygaster) pholo						
Narkeli Chela	Salmostoma bacalia	Х	Х	Х	Х	Х	
Loaches	Cobitidae						
Rani	Botia dario			\checkmark	\checkmark		Х
Gutum	Lepiodocephalus guntea						
Gora Gutum/Ganga Shagor	Someleptes gongota			\checkmark			
Bagrid catfish	Bagridae						
Tengra (Batasio)	Batasio batasio	Х	Х	Х	Х		Х
Golsa	Mystus bleekeri						
Kabasi Tengra	Mystus cavasius	Х		X	Х	Х	Х
Bajri Tengra	Mystus tengara	X	Х	√			
Tengra	Mystus vittatus						
Rita	Rita rita	X	Х	Х	Х	√	Х
Air	Sperata aor		Х	X	X		X
Guzi air/Guzkata	Sperata seenghala	Х	Х				
Butter catfish, etc	Siluridae						
Kani Pabda	Ompok bimaculatus		X	X	V	V	
Pabda/Madhu Pabda/	Ompok pabda						
Kowakata/Ghorakata							
Boal	Wallago attu						
Schilbeid catfish	Schilbeidae						
Ghaura	Clupisoma garua		V	X	X	V	V
Bacha	Eutropiichthys vacha	X	X	X	V	V	V
Batasi	Pseudentropious (Clupisoma)		N				
~ *	atherrinoides						
Silong	Silonia silondia	X	Х	N	X	X	Х
Pangas	Pangasiidae				1		
Thai Pangas	Pangasius sutchi	X	γ	γ	N	N	Х
Catfish	Sisoridae						,
Bagha Air	Bagarius bagarius	√ v	X	X	X	N	V
Senia (Eusufi)	Gagata cenia	X	٧	X	X	X	Х
Air breathing catfish	Clariidae		,			,	
Arrican Magur	Clarias gariepinus	X	N	X	X	N	X
Magur	Clarius batrachus	V	N	N	N	N	٧
Sunging cattish	Heteropneustidae		,	,	,	, ·	,
Sning	Heteropneustes fossilis	V	N	N	٦	N	N
Square-headed catfish		**		τ.	.1		
Unaka/Gangina/Kowakata	Chaka chaka	X	X	Х	N	N	Х

Species (Bengali Name)	Species (Scientific Name)	Baseline	Impact1	Impact2	Impact3	Impact4	Impact5
				2002-	2003-	2004-	2005-
		2000-01	2001-02	03	04	05	06
Catfish-eel	Plotosidae						
Gang Magur	Plotosus canius	X	Х	Х			Х
Gars	Belonidae						
Kaikla	Xenentodon cancila						
Top minnows	Aplocheilidae						
Tin Chokha	Aplocheilus panchax	\checkmark	Х				Х
Mud eels	Synbranchidae						
Kuicha	Monopterus (Cuchia) cuchia						
Glass perch	Ambassidae						
Lamba Chanda	Chanda nama	\checkmark					
Ranga Chanda	Parambassis ranga	\checkmark					
Gol Chanda	Pseudambassis baculis	\checkmark					
Jew fish, croakers	Sciaenidae						
Poa	Otolithoides (Pama) pama	Х			Х	Х	
Mud perch	Nandidae						
Meni/Bheda	Nandus nandus	Х	Х				
Badis	Badidae						
Kali/Napti Koi	Badis badis						
Mullets	Mugilidae						
Khalla/Kharshulla	Rhinomugil (Mugil) corsula	Х	Х	Х			Х
Gobies	Gobiidae						
Gugri Bila	Brachygobius nunus	Х	Х		Х		Х
Bele	Glossogobius giurius	\checkmark	\checkmark				
Climbing perch	Anabantidae						
Koi	Anabas testudineus						
Gouramies	Osphronemidae						
Khalisha	Colisa fasciatus	\checkmark	\checkmark				
Chuna Khalisha	Colisa laboisa		\checkmark				
Lal Khalisha	Colisa lalia		\checkmark				
Naftani/Berkul	Osphronemus(Ctenops) nobilis	X	\checkmark	Х			Х
Tilapia	Cichlidae						
Telapia	Oreochromis (Telapia)	Х	\checkmark				Х
	mossambicus						
Nailotika	Oreochromis niloticus	Х	Х	Х			
Snakeheads	Channidae						
Cheng	Channa gachua						
Gojar	Channa marulius	Х			Х	Х	
Taki	Channa punctatus						
Shol	Channa striata	Х					
Spiny eels	Mastacembelidae						
Tara Baim	Macrognathus aculeatus						
Guchi Baim	Macrognathus pancalus	\checkmark	\checkmark				
Boro Baim	Mastacembelus armatus		\checkmark				
Puffer fish	Tetraodontidae						
Potka	Chelonodon (Tetraodon) patoca		Х	Х	Х	Х	Х
Tepa/Futkora	Tetraodon cutcutia						
Freshwater prawn	Palaemonidae						
Gura Echa	Macrobrachium lamrrei	\checkmark	\checkmark				
Golda Echa	Macrobrachium rosenbergii	\checkmark	\checkmark	Х			
Dimua/Kathalia Echa	Macrobrachium villosimanus	Х	Х	Х		Х	Х
Total		64	67	71	73	84	68

A project of the Government of Bangladesh

Supported by USAID

Project Partners:

Winrock International Bangladesh Centre for Advanced Studies (BCAS) Center for Natural Resource Studies (CNRS) CARITAS Bangladesh

WEB: www.machban.org

MACH Headquarters: House No: 2, Road 23A Gulshan 1, Dhaka 1212 <u>Bangladesh</u>